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Abstract. We performed local density calculations of the electronic and positron states for a
300-atom model of bulk amorphous Ni0.4Pd0.4P0.2. The procedure for constructing the model and
the resulting distribution of bond angles and free volume are described. Comparisons are made to
experiment and to models of amorphous Ni0.8P0.2.

0. Introduction

Bulk amorphous metals are an interesting class of new materials possessing unique properties
that offer exciting possibilities for applications to a broad range of technologies. In contrast
to the previous generation of amorphous metals, bulk amorphous metals can be produced
in bulk form at cooling rates as low as ∼1 K s−1. The understanding of their structure, is
important to the explanation of their low cooling rate. One of the simplest and most studied
bulk amorphous metal is Ni0.4Pd0.4P0.2 [1]. We can benefit from the earlier work of Weber and
Stillinger [2] who developed interatomic potentials for the conventional metallic glass Ni0.8P0.2

that were constructed specifically to reproduce the measured partial pair distribution functions
(PDFs) [3]. Structures generated using these potentials have been used as the basis for density
functional calculations of the electronic conductivity, density of electronic states, atomic
density, and optical reflectivity [4]. The agreement of these calculations with experiment
validates the atomic models and the interatomic potentials used in their construction. Recent
measurements of the PDF and the Pd distribution function of Ni0.4Pd0.4P0.2 [5] provide a
very useful guide for extending the potentials of Weber and Stillinger [2] to the ternary alloy
Ni0.4Pd0.4P0.2. We describe the use of these potentials to generate a 300-atom unit cell model
of amorphous Ni0.4Pd0.4P0.2. We have confidence in our model because it reproduces the
measured partial distribution functions, and electronic and positron states calculated with this
model agree with photo-emission and positron lifetime measurements. The calculations of the
electron and positron states were performed using the first-principles, order-N , locally self-
consistent multiple scattering (LSMS) method [6]. We analysed the structure to determine the
distribution of bonds, free volume, electronic states, and positron states. Comparisons were
made to models of the conventional amorphous metal, Ni0.8P0.2. The most striking contrast
is in the amount and distribution of free volume. Because free volume is so closely related to
diffusion and the kinetics of glass stability it may be the key to the glass forming ability of
Ni0.4Pd0.4P0.2.
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1. Computational technique: the LSMS method

The electronic structure of systems with a number of atoms, N in the unit cell as large as 300
cannot be obtained by conventional band structure methods. The LSMS method is an O(N)

multiple scattering method that is specifically designed for massive parallel processors [6].
It relies on several stationary properties of density functional theory to ensure accurate free
energy determination based on an electron density that is determined self-consistently at each
site [7]. The LSMS method makes the simplifying assumption that, for the purpose of solving
the Schrödinger equation, the effective potential beyond a cluster of neighbouring atoms (the
local interaction zone (LIZ)) surrounding each atom can be approximated by a constant. Each
atom is then taken to be at the centre of its own LIZ. In the calculations presented here the
atomic potentials are taken to be spherical and are obtained self-consistently within the atomic-
sphere-muffin-tin approximation [8]. The LIZ is taken to be a sphere of radius 10 Bohr radii.

2. Atomic model

The calculations were performed for a periodically reproduced cubic box containing an
amorphous network consisting of 300 atoms for which the atomic positions had first been
relaxed to a local energy minimum via two-body interactions [4].

The starting point for generating the amorphous configurations was a previously published
[4] structure for amorphous Ni0.8P0.2. This configuration was generated by random packing,
followed by interchanges to eliminate P–P neighbours, and finally relaxation via the pair
potentials of Weber and Stillinger. The Ni0.8P0.2 model structure has PDFs that agree well
with experiment. We have considerable confidence in this structure because it has been used
as the basis for many calculations that agree with experiment. However the algorithm that
eliminated P–P nearest neighbours only frees the sample of P–P pairs that are closer than the
smallest Ni–Ni distance. To remedy this weakness, without completely abandoning this model
that has served us well, we scaled ‘r’ by a factor of 0.5 in the P–P potential in order to force
greater P–P separation. We also made a very small adjustment to the Ni–P potential. This
left the model substantially intact, but pushed those few closely-spaced phosphorus pairs to
positions clearly identifiable as second nearest neighbours. The Pd-containing structure was
then generated by randomly replacing half of the Ni by Pd. We then relaxed the structure using
Ni–Pd, Pd–Pd, and Pd–P potentials introduced to augment the already defined Ni–Ni, Ni–P,
and P–P potentials. The newly-introduced potentials were adjusted to optimize agreement
with the measured partial distribution functions. The potentials are of the form

Vij (R) = Cij e(αij R−1.652 194)−1
[(αijR)−12 − 1)�(1.652 194 − αijR) (1)

with the parameters as given in table 1. �(x) is the heaviside function. The PDFs from the
model are compared to the measured values [5] in figure 1.

Table 1. Parameters for potentials. Units: α is in units of inverse fcc Ni–Ni distance of 2.49 Å and
C is in 10−12 ergs.

Ni–Ni Ni–Pd Ni–P Pd–Pd Pd–P P–P

Cij 1.134 1.172 1.701 1.211 1.7011 0.567
αij 1.000 0.900 1.080 0.850 0.950 0.755
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Figure 1. Comparison of model (full curves) amorphous pair distribution functions to
measurements by Egami et al [5] (broken curves).

3. Stability and diffusion

Like many metallic glasses (NixPd1−x)0.8P0.2 alloys are associated with a deep eutectic. A
reasonable assumption is that at compositions where the liquid state is stable at unusually
low temperatures the amorphous phase, which is essentially a frozen liquid, has a free energy
competitive with alternative crystalline phases. If long diffusion paths are required to reach
energetically-favoured crystalline structures, or if diffusion barriers are high, the conditions
for glass formation are enhanced.

In crystals, the diffusion rate is controlled by the density of vacancies and the hopping
time. The hopping time depends on the height of the barrier to vacancy hopping. In glasses
the definition of a vacancy is not clear cut. Sietsma and Thijsse [9] have made progress
toward a workable definition of a vacancy in glass. They characterize the unoccupied regions
in the glass system according to their volumes and number of surrounding atoms. They
observe that annealing eliminates large, local, free-volume elements that have greater than
nine surrounding atoms. These large volumes, which tend to anneal out, are considered to
play the role of vacancies, while those that remain are thought to be similar to interstitial sites
or constitutional vacancies in crystals. The large and small volumes are referred to as holes and
voids, respectively. The distribution of free volume, because it dominates diffusion is likely
to play an important role in the kinetic stability of the glass.

We attempt to extend the understanding of the free volume in two ways. First, because
our model is based on matching the measured PDFs, there is the hope that it also reproduces
characteristics of the distribution of free volume found in the experimental sample. Hence,
we study the distribution of free volume in our model. Although the PDFs do not uniquely
determine the atomic arrangement, they do constrain it considerably and the distribution of
free volume in our model may be indicative of its distribution in a real sample. Second,
we study positron wavefunctions. Because positrons are repelled by the nuclei, injected
positrons spend most of their time meandering through the interstitial regions and vacancies
until they annihilate. If defects that trap the positrons are plentiful, the majority of positrons
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will diffuse through the system for only a short time before being trapped. Once trapped they
find themselves in a region of low electron density and have an extended lifetime characteristic
of the type of defect (i.e. in a crystal typical traps would be monovacancies and divacancies).
We take the initial steps necessary for interpreting the information available in the annihilation
photons; we calculate the positron density and lifetime.

4. Atomic structure

We can further analyse the structure by tabulating distributions of bond angles. We find that the
distribution of angles (figure 2) in Ni0.4Pd0.4P0.2 is very similar to the distribution in Ni0.8P0.2.
They both peak near θ = 60◦ and 108◦ characteristic of icosahedral packing and differ only
in small details. Fcc packing would have had peaks at 60◦, 90◦, and 120◦. The population of
bond angle can be subdivided according to whether the vertex atom is phosphorus or transition
metal and the number of phosphorus atoms among the remaining two atoms that form the
angle. The angle populations involving only transition metal atoms at the two compositions
are very similar and are very icosahedral in nature. The angles with a P vertex have very similar
distributions at the two compositions; the angles are predominately around 70◦, consistent with
a lower coordination around P. The case of a transition metal vertex and a P and transition metal
atom completing the angle shows the greatest change with composition. This change is because
Pd and Ni sit at different distances from the phosphorus due to their different sizes. The angles
formed by a transition metal atom at the vertex and two phosphorus atoms are distributed in a
broad peak (not shown) centred at 100◦ with no angles below about 80◦ because there are no
P–P nearest neighbours.

Another way of describing the bonds is to look at the atoms surrounding each bond. In a
perfectly icosahedral system each bond would have five surrounding atoms that are common
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Figure 2. The distribution of bond angles: the curves denote results for Ni0.8P0.2; the solid curve
is for all bond angles, the long-dash curve is for the P-vertex bonding to two Ni, the short-dash
curve is for the Ni-vertex bonding to a P and a Ni, the dotted curve is for all Ni. The symbols apply
to Ni0.4Pd0.4P0.2 and are labelled in the key, T stands for Ni or Pd. For example, P–TT stands for
a phosphorus-vertex bonding with two transition metal atoms.
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Figure 3. The integrated distribution of free volumes: Ni0.8P0.2 is denoted by a full curve and
Ni0.4Pd0.4P0.2 is denoted by a broken curve.

nearest neighbours to the two atoms that form the bond. Fcc would have four bond neighbours.
In our models we find that the most commonly occurring number of bond neighbours is five.
About half the bonds have five bond neighbours, with the remaining bonds having numbers of
neighbours predominately in the ranging from four to seven. For transition metal bonds about
four of the surrounding atoms are transition metal atoms and one is P. The bonds with more than
five neighbours usually have an additional P. Again, there is no clear-cut distinction between
the two systems. From the point of view of bonds the structure behaves substitutionally, with
local dilation to account for the larger size of Pd, but on average preserving the bond angles.
This is consistent with the observation made by Egami et al [5]: that the PDFs are roughly
concentration independent; and the observation of Alamgir et al [10]: that the core levels are
roughly concentration independent. It is doubtful that these small differences in bond statistics
can be held accountable for the much greater glass forming ability of Ni0.4Pd0.4P0.2.

Another way to characterize the atomic structure is to look where the atoms are not. We
construct Voronoi polyhedra [11] according to the radical plane construction [12] using the
radii 2.293, 2.66, and 1.963 au for Ni, Pd and P, respectively. We then shift our attention to
the points farthest from the atoms, the vertices of the Voronoi polyhedra. These are the points
associated with the free volume [9]. For each vertex we find the largest sphere that does not
overlap any atomic sphere. We then group those vertex-centred spheres that overlap each other.
The space defined by the overlapping, vertex-centred spheres defines a cell of free volume. The
distribution of the volumes of these cells is shown in figure 3. The figure shows the integrated
free volume (i.e. the sum of all free volume below a limiting void or hole size). There are
two major differences between the two compositions. The Pd-containing composition has less
free volume and less of the free volume is associated with large-volume cells. This could be
a manifestation of the higher packing fraction possible with a distribution of atomic sizes.

In bulk amorphous alloys, as proposed by Sietsma and Thijsse, diffusion is probably
controlled by the large free volumes, holes, that are smaller than vacancies but larger than the
interstitial volumes in ordered materials. Reduction of the number of these holes may be the
mechanism by which bulk amorphous alloys are prohibited from diffusive transformation to
the crystalline ground state even when cooled slowly. It would be valuable to have measured
values for the positron lifetimes at these two compositions. The validity of our model free-
volume distributions would be supported if the lifetime was longer for Ni0.8P0.2, indicating
that the more plentiful holes trapped the positrons.
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5. Positron states

Positrons are trapped by defects, particularly vacancies. When they annihilate they provide
information about the electron density at the defect as well as the atomic species of surrounding
atoms. In a simple system, such as well annealed Cu with a few well dispersed monovacancies,
two lifetimes are observed. One is a short lifetime associated with itinerant positrons in the
bulk, and the other is a longer lifetime associated with positrons trapped at the vacancies. The
density of vacancies and the electron density at the vacancy site can be determined. In more
complex systems there may be one lifetime, or several lifetimes. For example, amorphous
metals typically have one broadened lifetime, the interpretation of which is not clear. It is still
debatable whether all annihilation is of the bulk type or from defects. In these more complex
systems models are needed to extract useful information from the positron experiments.

The two photons created when a positron annihilates with an electron carry away the
momentum and energy of the pair. Because the positrons have (shortly after injection) only
thermal energies, a high-momentum photon pair indicates annihilation with a high-momentum
core electron, rather than a low-momentum valence electron. The high momentum part of the
core annihilation profile as a function of momentum is characteristic of the element and can
be obtained by experiments on the pure element and by calculation [13]. In multicomponent
systems, the high momentum profile of positrons trapped in vacancies can be compared to
profiles from the pure elements to indicate the atomic number of the atom whose core electron
participated in the annihilation [13]. The simplest assumption is that the atoms participating
in the annihilation are nearest neighbours of the trapping defect.

At this stage we can calculate the positron wavefunctions and determine which nuclei
have the greatest overlap with the positron density. We did this by calculating the
electrostatic potential of our self-consistent electron density. The local approximation to the
electron–positron correlation potential [14] was added to the electrostatic part to provide a one-
particle Schrödinger equation for the positrons. We used the LSMS to solve for the positron
wavefunctions. The site decomposed density of states shows that the low-energy positrons
are predominately on P sites. The product of the electron and positron densities adjusted for
correlation and multiplied by the annihilation cross section gives the positron annihilation rate
[14]. We have not yet incorporated the matrix elements that couple the positron wavefunctions
to the electronic core levels. Therefore, we cannot predict the characteristic patterns that will
be seen in high-momentum positron annihilation experiments on Ni0.4Pd0.4P0.2 when they are
carried out. We have observed that the positrons have their greatest overlap with the phosphorus
core so we can anticipate that the high-momentum annihilation will indicate annihilation at
phosphorus cores.

We can compare our calculated positron lifetime to some interesting preliminary
measurements by Somieski [15] of the positron lifetime in Ni0.4Pd0.4P0.2. Their measurements
give lifetimes in an as-quenched specimen distributed in the range 140–180 ps [15]. After
annealing for 24 h at 200 ◦C a second group of lifetimes appears in the range 100–120 ps.
Our calculated average lifetime for the lowest eight positron states is 114 ps. One possible
explanation of these results is that the as-quenched sample has large defects similar to quenched-
in thermal vacancies in rapidly-cooled crystals. These defects in the amorphous structure may
have long lifetimes in the 140–180 ps range. These defects could have large trapping cross
sections that could account for nearly all annihilation events. In the computer-generated model
these large vacancies are probably precluded by the model construction procedure. When the
experimental sample is annealed, the number of large vacancies is reduced and eventually
the smaller-free-volume cells similar to those seen in the model begin to trap positrons with
sufficient probability to be observed in the experiments in the range 100–120 ps.
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6. Electronic states

The electronic density of states is modified considerably by the addition of Pd (figure 4).
Substitution of Pd for Ni greatly increases the overall d-band width of Ni0.4Pd0.4P0.2 relative
to Ni0.8P0.2 [4]. This occurs because of the broader d-band width of elemental Pd and because
the centres of the Ni and Pd d-bands are displaced from each other. The Ni states occupy
the upper part of the band and the Pd states dominate in the lower part of the band. This
separation is seen in the behaviour of the x-ray photo-emission spectrum (XPS) as a function
of Pd concentration [10].
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Figure 4. Density of states as function of electron energy for amorphous Ni0.4Pd0.4P0.2; the zero
of the energy scale is the Fermi energy. The dash–dot curve is the XPS calculated using a rough
approximation to the inclusion of matrix elements (arbitrary units).

There is a long tail of states below the d-band that are contributed equally from Ni, Pd,
and P states. From our experience with Ni–P we speculate that these tail states are somewhat
localized due to the disorder. The fact that all species contribute equally to these tails would
tend to make them independent of composition. This can be seen in the lack of composition
dependence of the XPS data between 5 and 8 eV.

We find low-lying phosphorus states split-off from the d-bands. These states may be
responsible for the barely perceptible bulge in the XPS data at a binding energy of 12.5 eV.

Our calculated density of states at the Fermi energy is higher than that seen in the XPS.
Furthermore, we did not see a minimum in the density of states near the Fermi energy that,
if present, would have indicated the effects of the stabilizing mechanism suggested by Nagel
and Tauc [16]. Our density of states has a dip at 4.5 eV that is not seen in the XPS. A
further difference between the density of states and the XPS is that the XPS d-band is almost
symmetric about the band centre, while the calculation shows a strong Ni peak at the upper
d-band edge. In order to show how inclusion of matrix elements affect the agreement, we
plotted the weighted sum of the Ni and Pd densities of states. We weighted the Pd states by a
factor of four relative to the Ni states. This is based on the statement of Almagir et al [10] that
the P matrix element is very small and the matrix element for Pd is four times as large as for
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Ni. This rough approximation to a true calculation [17] of the XPS gives excellent agreement
with the measured spectrum.

7. Conclusions

We have used the PDFs recently measured by Egami et al [5] to develop interatomic potentials
suitable for Ni–Pd–P amorphous alloys. We do not make any claim for the usefulness of the
energy comparisons based on these potentials. Combined with the procedure of randomly
packing hard spheres they should be viewed as part of an interpolation or extrapolation
procedure that can use the PDFs of Ni0.8P0.2 and Ni0.4Pd0.4P0.2 to construct models at other
compositions. The geometric properties of the model are discussed along with the resulting
electron and positron states. The comparisons of the electronic density of states and positron
lifetimes with measurements are promising. These comparisons are not straight forward and
there are additional questions to be addressed; still, it is fair to say at this stage that there are
no contradictions that discredit the validity of our model structure.
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