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The number of operations required for conventional density-functional algorithms grows as the cube of the
number of atoms, N. For large systems the computing requirements are unattainable. To overcome this limi-
tation it is acceptable to approximate those variables with respect to which the free energy is stationary. We
show that the stationarity of the free energy with respect to electron density, one-electron potential, chemical
potential, occupation function, and temperature allows for very useful approximations leading to rapid and
accurate determination of the free energy. Here we discuss approximations involved in calculating the finite
temperature electron density needed to evaluate the Harris-Foulkes free energy. Of particular importance are
(1) an electron density at each site that is based on exact solution of the Poisson equation combined with a
solution of the multiple-scattering problem in which only scattering from a small cluster of sites surrounding
the site in question is retained and (2) an approximate occupation function having a finite number of poles in
the complex energy plane. The intention is to develop, within density-functional theory, an O(N) scalable
first-principles scheme, based on spatially local multiple-scattering methods, for calculating free energies of

large systems.

A central problem in applying density-functional-theory
(DFT) methods involves the O(N3) divergence in the
amount of work associated with the linear-algebra operations
of inverting or diagonalizing a matrix whose size is propor-
tional to N. The ultimate objective of pursuing the following
methodology is to prepare the ground for the development of
scalable first-principles DFT algorithms for computing the
free energy F of large systems with a number of floating
point operations that grows linearly with the number of at-
oms, N, in the basic simulation region.1

Within DFT, the determination of F is conveniently sepa-
rated into two steps. First, the variables upon which F de-
pends are determined, namely, electron density p(r), one-
electron potential v(r), and chemical potential . Second,
the free-energy functional must be evaluated for the particu-
lar values of p(r), v(r), and u determined in the first step.
Here we argue that the first step can be performed using
real-space methods. We do not address the use of real-space
methods to perform the second step. We concentrate on pre-
paring the foundation for such a procedure and discuss two
devices that allow all calculations to be performed away
from the real axis in the region of the complex energy plane
where real-space methods converge. This is achieved by
working at finite temperature where the poles in the occupa-
tion function are separated from the real axis. Furthermore,
working at fixed chemical potential eliminates the need for
calculations near the real axis for the purpose of updating the
chemical potential.

We focus on two approximations of interest within the
context of multiple-scattering methods. First, the electron
density is approximated by a sum of locally self-consistent
site densities py,(r;), whose determination is ignorant of any
scattering beyond a cluster of M atoms surrounding the ith
site. Second, the occupation function f(e—u) is approxi-
mated by fp(€— ), which we refer to as a band-Fermi func-
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tion, where the label P is the number of its poles in the upper
half of the complex energy plane. We demonstrate that, by
calculating the free energy at an artificially high temperature,
one is able to speed up calculations without losing the ability
to accurately determine the ground-state energy.

In order to demonstrate that real-space methods are ca-
pable of providing values of p(r), v(r), and u that are of
sufficient quality to yield a free energy of the required accu-
racy, we perform all calculations for fcc Cu, for which the
exact values are known. Furthermore, for this system the
second step of evaluating the free energy can be carried out
exactly for the approximate p(r), v(r), and w. Specifically,
the Korringa-Kohn-Rostoker (KKR) method is used to
evaluate the eigenvalue sum and electron-hole (eh) entropy
contributions to F, both of which require accurate determi-
nation of the density of states. We can therefore monitor the
effect of using approximate values for p(r), v(r), and u. To
reiterate, although local densities of states at the center of
each cluster of size M could have been calculated along with
pu(r;) using real-space methods, we use exact answers ob-
tained by conventional methods, in our case the KKR
method. These results can then act as a base line. In this way,
we can critically monitor the errors resulting exclusively
from approximations to p(r), v(r), and u. A detailed dis-
cussion of the convergence properties of the eigenvalue sum
and eh entropy and the possibility of obtaining a completely
scalable algorithm for F based on real-space methods is post-
poned to a further communication.

In what follows, we will utilize several stationary proper-
ties of F. These are generally valid, independent of the
method used to solve the Kohn-Sham equations; however,
we have in mind the multiple-scattering approach, which
gives directly the electronic Green function.

In DFT the free energy is given by>
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where n[e,v[p,r]] is the density of states for v[p,r],
f(e—pu) is the occupation function, and Z; is the nuclear
charge at the site i. The terms on the right-hand side of Eq.
(1) are usually referred to as the eigenvalue sum (first term),
the “double counting” contribution (next three) [which in-
cludes the Coulomb (U) and exchange-correlation (E,.) en-
ergies], and eh entropy (last), respectively. The remaining
term measures the energy cost of failing to choose the chemi-
cal potential in such a way that the number of occupied elec-
tron levels is equal to the number of protons. In Eq. (1),
v[p,r] is the so-called input potential; it is related to the
electron density through the Schrodinger equation in the fol-
lowing manner:

(=V3+u[p,r]—€)¥,;=0 )

and

p(r)=2 fle—p)|¥,|% )

i=0

J
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The arguments of v[p,r] are enclosed in square brackets to
distinguish it from the output potential, which is the sum of
the Hartree and exchange-correlation potentials given by

v(p,r)= S(U+E) Sp(r) . 4)

In general, E,. is temperature dependent; however, the de-
pendence is very weak* and will not be considered here. As
expressed in Eq. (1), F is stationary with respect to
v[p,r]. Thus if F is evaluated with v[p,r] replaced by a
reasonable approximation, the resulting error in F will be
small. If v[p,r] is replaced by a functional such as v(p,r)
that satisfies v(p,r)|, _=vlp,rll, , [Pss is the fully con-
verged local-density-approximation (LDA) electron density],
then the resulting expression can be viewed as a new station-
ary functional,

S 2~ [ defte-mnlen(on]
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Equations (4) and (5), which define the generalization of the
Harris-Foulkes®® functional to finite 7, are valid for
arbitrary-shaped electron densities and potentials. However,
we used the muffin-tin form of U and E, for testing pur-
poses. Clearly Fy[p]=F[p] if p=pgs-

We now turn to the use of a locally self-consistent elec-
tron density, for the purpose of exploiting the stationarity of
F. Specifically, we propose self-consistent calculations in
which the Poisson equation is solved for the whole system,
while the electron density is obtained by solving the
multiple-scattering problem for clusters of finite size cen-
tered on each of the sites in turn. Thus, the total electron
density py(r) used in solving the Poisson equation is given
by the sum of individual site densities, p(T)
=3,;p4(r)w'(r), where pi,(r) corresponds to using an
M-site cluster’ about site i and ’(r)=1 (0) if r is inside
(outside) the ith Wiger-Seitz cell. We refer to p,,(r) as the
locally self-consistent density; the corresponding chemical
potential is u,,. The corresponding combination of Hartree
and exchange-correlation potentials resulting from p,(r) is
referred to as v (r). Clearly, p)/(r) approaches the true self-
consistent density p.«(r), as M goes to infinity, i.e.,
P=(r) = per(r). In Fig. 1 we show, as a function of the clus-
ter size used to determine py(r), the error in the energy

-

obtained by using py(r) and vy(r) in Eq. (5). Recall, we
use the standard KKR method to evaluate the one-electron
sum and chemical potential in Eq. (5). Interestingly, neglect
of all but a single scatterer in solving the Schrodinger equa-
tion results in an error of only 1 mRy. Including a single shell
of scatterers, M =13, reduces this error to <0.1 mRy, suffi-
cient for all practical purposes.

We now discuss the Fermi function and approximations to
it. The Fermi function fr,

friz=p)=1/(e*"#A+1), (6)

has a residue of —kpT at each of its Matsubara poles zf )
which are strung out like knots on a line passing through the
real axis at u,

Zf=p+u2j—1)mkgT for j=0,£1,%2,... . (7)
Thus, at finite 7, contributions to the electron density and
eigenvalue sum come from only these poles. Unfortunately,
the poles are infinite in number and truncation at a finite
number of poles is equivalent to using an approximate occu-
pation function given on the real axis (z=€) by

fle—p)~1/2+ ;3(e—u)§1 [Ble— ) P+[7(2j- D"’
(®)
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where B=1/kgT. As can be seen from Fig. 2, this approxi-
mation converges slowly in the number of poles, and is de-
ficient because f(e— u)—1/2 as e— =, Thus, attempts to
reduce computational effort by converting energy integra-
tions to sums over Matsubara poles are fraught with diffi-
culty.

Once again we turn to a stationary property of F. Observe
that f(e— n) appears implicitly, through p(r), and explicitly
in the eigenvalue sum and entropy. Only the explicit varia-
tion need be considered because the variation with respect to
p(r) vanishes. The remaining variation with respect to the
explicit dependence on f(e—u) vanishes®® provided
f(e—p) is given by the Fermi function. However, because
of the stationarity of F with respect to f(e— u) we have the
liberty to modify f(e— u) while doing minimal damage. If,
instead of cutting the line of Matsubara poles at j.x, we
wrap it around a windlass of radius o, chosen such that the
poles on successive windings coincide, the following ap-
proximation is generated:

fe(z—pw)={l(z—p+0o)/c)?P+1} 1. 9)

The function fp(e— u), which we refer to as a band-Fermi
function, is displayed in Fig. 2. The number of poles P is
inversely related to T by B=2P/o. Note that for
u—20=<e, fp(e—p) is a remarkably reliable approxima-
tion to fr(e—pu). An example of the accuracy of
fp(e—p) is shown in Fig. 3, where a comparison is made
with the exact entropy k3T/3 for the case of a constant unit
density of states. In terms of calculating F, the fact that
fp(e—p) is a very poor approximation below about
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Energy (Ry)

FIG. 2. The exact Fermi function at 2466 K is compared to values
obtained from Eqgs. (7) and (9) evaluated when a finite number of poles in
the upper half-plane are included. The curves are labeled by the number of
poles used. Those curves which drop to zero at both positive and negative
energy are calculated with Eq. (9).

FIG. 3. Entropy terms TS(fp) and TS(fF) plotted as a function of T for
the case of constant unit density of states. Also shown (lower points) is the
error T[S(fp) —S(fr)] magnified by a factor of 10 for P=6, 7, 8, 9, and 10.

u—20 is of no consequence, provided there are no eigen-
values within this energy interval. We can then use
fp(e— ) for the valence band, choosing o such that
fp(e— ) goes to zero below the band and treat the remain-
ing states as fully occupied unbanded core states.

Within multiple-scattering theory, occupying states ac-
cording to fp(e— ) rather than fr(e— u) has two advan-
tages. First, as previously suggested, the number of energies
at which the Schrodinger equation needs to be solved is
greatly reduced; there are only P poles in the upper half-
plane. Second, all of these poles are removed from the real
axis. An imaginary part in the energy introduces a damping
into the real-space free particle propagator, making real-
space multiple-scattering methods more rapidly convergent.
For example, at T=2446 K (kzgT=1/64) and 0=0.5 Ry
(20 can span an occupied bandwidth of 1 Ry, which is typi-
cal of transition metals), P=16 and the pole closest to the
real axis has an imaginary part of 49 mRy.

It is clear that the higher the electron temperature the
simpler and more rapidly convergent real-space multiple-
scattering methods utilizing fp(e— u) become. This prompts
us to ask if it is possible to perform calculations at an el-
evated electron temperature and still obtain useful results for
temperatures of physical interest, e.g., T=0 K. The answer
is affirmative, because calculation of F provides an addi-
tional piece of information, the entropy. The negative of the
entropy is the derivative of the free energy with respect to T.
Additionally, we know that the entropy is zero at T=0 K (F
is stationary with respect to T at T=0 K), is monotonically
increasing, and has only odd derivatives at T=0 K. Thus, if
we perform a calculation at an elevated T the free energy is
known at that 7, its derivative is known at two temperatures,
and its third derivative as well as other odd derivatives are
zero at T=0 K. Consequently, if the temperature at which
the calculation is performed, 7, is close to the temperature
of interest then quadratic terms will dominate, and we can
use

F(T)=E(Tp)—[T+ (T—-Ty?2T4S(Ty) (10)

to fit the value of F(Ty) and its known derivatives. If the
T=0 K energy is sought, it is convenient to use the fact that
Eq. (10) implies 2F(T=0)=E(T;)+F(Ty)."°

In Fig. 4 we show the calculated free energy of Cu as a
function of T together with a curve based on Eq. (10) using
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FIG. 4. Temperature dependence of the fully converged F, E, and
— TS for Cu. The calculations were performed using fp(€— u) with P taken
to convergence and conventional reciprocal space KKR methods in both the
charge self-consistency and total energy steps. The free energy based on Eq.
(10) with T,=4000 K is shown by dots.

T;=4000 K. Determination of E(T=0), using Eq. (10) and
values of T;= 8000, 6000, 4000, 2000, and 1000 K, leads to
errors of 2.30, 1.23, 0.15, 0.08, and 0.02 mRy, respectively.
Thus, even if we desire the ground state energy, we can
perform calculations at temperatures as high as 4000 K and
still obtain useful precision.

In LDA bulk calculations the chemical potential is usually
updated, along with p, at each iteration to maintain charge
neutrality. This avoids the discomforting situation of having
an infinite Coulomb energy. Here, we suggest that it is pos-
sible to calculate uy, and p,,(r) in this manner, but to evalu-
ate Fy without further adjustment of u. Unfortunately, this
means that the integral of the density of states is not ensured
to balance the nuclear charge. The electron density p(r)
does provide a neutral charge density for evaluating the
double counting terms in the Harris-Foulkes functional; how-
ever, occupation of the eigenstates up to u,, gives the wrong
number of electrons. Does miscounting the energy levels dis-
credit the free energy? Presumably, u,, is very close to the
self-consistent value wy. Since, in Eq. (5), u appears ex-
plicitly only as the prefactor of one term in Fy and appears
implicitly in variables with respect to which F is stationary,
it follows that

dFy

dup

=Z Zi_f_wwdef(e_.uscf)n(e)zo- (11)

Hescf

In Fig. 5 we show the variation of F; with respect to the
deviation of u from ug¢. Also indicated are specific values
of ugs— my for several choices of M. Clearly, an accuracy
of tenths of mRy’s is achieved for u,, based on small clus-
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FIG. 5. Dependence on the chemical potential of the T=0 K free energy
of Cu based on Egq. (5). The values of chemical potential used in evaluating
Eq. (5) were displaced from the neutralizing value by small amounts. The
electron density was taken to be p.(r). The difference between wy ¢ and
My is indicated for M =13, 19, 43, and 55.

ters. The important point is that, by exploiting the second-
order variation with respect to u, the calculations of the
Green function necessary to readjust w to its correct value
are avoided.

Summarizing, we have pointed out that, at least for the
self-consistency step, the O(N?) problem can be trivially
circumvented because the values of py(r) and u;, emerging
from locally self-consistent calculations are close enough to
their exact values that they give free energies accurate to
tenths of mRy. This local self-consistency algorithm is mani-
festly linear in the number of independent atoms in the sys-
tem.

Additionally, we have shown that the band-Fermi function
provides an elegant and reliable method of calculating the
free energy at finite 7. The use of fp(e— u) complements
real-space multiple-scattering theory by limiting calculation
to a small number of complex energies. The computational
advantages of this formulation increase at elevated T because
the number of poles decreases and the size of the required
real-space cluster can be reduced. Even though we are usu-
ally interested in phenomenon at modest temperatures, we do
not have to abandon the improved computational environ-
ment at elevated T because the entropy provides sufficient
information to reliably fit the temperature dependence of the
free energy.
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