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Approximate occupation functions for density-functional calculations
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The density-functional free energy can be written in a form that is stationary with respect to variations in the
occupation function. For this reason it is useful to look for approximate occupation functions that are suffi-
ciently close to the Fermi function that accuracy is not compromised and yet have advantages for computation.
From a computational point of view it is useful to reduce the number of poles of the occupation function in the
upper half of the complex energy plane and to locate the poles as far from the real axis as possible. A family
of approximate occupation functions that economize computation is introduced. Their properties are discussed
and illustrated for a model systefrf§0163-18207)04644-4

I. INTRODUCTION perature so there appears to be no flexibility in the nature of
the poles. However, the free energy is stationary with respect
In electronic structure calculations based on Greento variation of the occupation function. This allows us to
function approaches, it is common to circumvent integralsnake small modifications to the occupation function without
over real energy by analytic continuation into the complexdegrading the free enerdyBeyond this, we are able to make
energy plane. The Green function has no poles in the uppdarge changes in the occupation function over energy ranges
half plane so the integration path over enefthyat at zero were the density of states is zero. The free energy is obvi-
temperature typically extends from the energy; —, to  ously independent of changes in the occupation function
the Fermi energye=u) can be deformed upward into the over these ranges. Furthermore, the difference in free energy
complex energy plane. This deformation moves the calculabetween two systems is independent of changes in the occu-
tion of, for example, the density of states to complex enerpation function over those energies at which the density of
gies where it is a smooth function. This procedure greatlystates of the two systems is the same.
reduces the number of required integration mesh points. Un- Further freedom is attainable because different approxi-
fortunately the integration contour must return to the realmations to the occupation function can be used for different
axis ate=u and the integration mesh must be finer alongcontributions to the charge, i.e., valence and core, single site
this last segment. Another important advantage of having &and multiple scattering, @, p, d, andf orbitals.
finite imaginary part to the energy is that the Koringa-Kohn-
Rostoker, KKR, matrix whose inversion accounts for the Il. FREE-ENERGY FUNCTIONAL
vast majority of the computation time is much better condi-

tioned at complex energies and is amenable to rapid inver- 'N€ statement that “the free energy is stationary with
sion by iterative techniqués. respect to the occupation function” is actually inaccurate.

At finite temperature the Green function remains analyticOnly certain forms of the expression for the free energy have
in the upper half plane. Integration over energy extends frontliS Property. The importance of using a free-energy expres-
e=— 10 €=+, but the required integrals to determine SiON that is var|at_|onal in the_ occupatlon5 function has been
the electron density, eigenvalue sum, number of electrond€cently emphasised by Wildberget al” However, the
and the electron-hole entropy involve products of the Greefyited literature proposes a final expression that is in fact not
function and the Fermi distribution function. The Fermi Variational. To clarify this point and to demonstrate the way
function does have poles in the upper half plane. When th& Which any algorithm for the number of electroNsas a
integration over complex energy along a contogrs Re ¢ function of the chemical potent[al determines the free en-
where R—, vanishes one can utilize the residue theorenr9y, We use the thermodynamic relafidretween the grand
and evaluate the integral over the real energy by summinBOte”t'am and the number of electrons to derive the free
over the residues at each of the poles of the Fermi functiorN€ray.

(As discussed below the entropy involves branch cuts that

preclude deforming the integration contour to infinit\e &:
emphasize that in this paper the temperature and entropy I
trieofr?é tgntg] %géi(;;?iglssd;g;)? ebseogtf:r geg;)r:(;;f;eor:#g:etaerrﬁ OSk/\/ithin the Kohn-Sham scheme of density-functional theory,

perature, in which case the formalism described here woul® is given by N=JZ_den(e)f(e—pu), wheren(e) is the
apply to calculation of the free energy in the Born- density of states. Integrating over the chemical potential and
Openheimer approximation. It is evident that the positions2ddinguN the free energy is obtained:

and number of poles of the occupation function determine .

the amqunt of c_omputation requir'ed.'Of course .the Fermi FZMN_f“ d,uf den(e)f(e—p). )
occupation function is known and is fixed for a given tem- —o —o

—N. 1)
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This expression is manifestly first order in the occupationvalid for the Fermi function,fr=(elc"#/*T+1)"1 Pro-
function f. Using an identity relatingn(e) to the integrated ceeding, we obtain an expression fer with the desired

density of statesN(e)= /€ _.den(e), stationarity?°
_d(Nf) d(Nf) _dN -
”@m”—‘EZ*'dM'4E; () Hﬂ=fﬂﬁed&—um&%1[mpwH[M+a&M
and usingéN/év=—p andv=56(U +E,,)/5p we arrive at -
the more familiar form, +u N—f de f(e—pu)n(e)
F=N fxd Nr+f“d fmd de oN dv
= —_ r _— e}
Y LR LT T e du +kBTJ. de n(e){f(e—w)In[f(e—p)]
=Np— f_ deNf— fo dr p(r)v(r)+U(p)+Ex(p), +[1-f(e—w)]InN[1-f(e—p)]}- (6)

(4) The fact that the free energy is stationary with respegi to
~ makes it easy for the reader to verify that the above expres-

energy and the exchange-correlation energy, respectivelytention to approximate forms fdrthat can take advantage
This form fits well with techniques that use the LI&ydn-  of this stationarity.

tegrated density of states formula to accelerate the angular
momentum convergence of the “band” energy. It is not,
however, the best form to use in conjunction with approxi-

mate occupation functions, because it is not stationafy in It was demonstrated in a previous paptrat functions
should be noted that even if the exact Fermi function is Usequth a limited number of po|es can accurate|y reproduce
any energy integration mesh used to construct the electrofihe form described in this earlier work was motivated by

density or the eigenvalue sum implies an implicit approxi-replacing the exponential ifir by the well known approxi-
mation tof. The approach in Ref. 5 is to converge the inte-matione*~ (14 x/N)N for largeN, obtaining

gration mesh. This convergence is reached fairly rapidly be-
cause the integration path is far from the real axis in the

lIl. APPROXIMATE OCCUPATION FUNCTIONS

region where the Green function varies smoothly with en- f]'\-‘(z_’u): ! — (7)
ergy. We avoid the issue of converging the energy integral 14 M 41
by approximating the occupation function and employing an NkgT

extremal free energy. In order to obtain a form stationary in

f we must integrate by parts using the identity, Here the subscrip indicates the number of poles, and the
superscript 1 is the value of a parameter that will be defined
later. fﬁ, can also be written less compactly in terms of its

df d
(e=m) ge=keTgelf Inf+(1=Din(1=D], () poles in the upper half plane,

(e—m)
NkgT

] 2j—1
—COSFT

+2

N/2

1
file-m=5 (e~ wikeT 2,

2
+

2] -1 2 (8)
Nsinm }

(e—u)/KgT+N

This can be compared with the corresponding expression fatructing approximate occupation functions would be to se-
the exact function, lect a number of poles and then optimize the position and
fo(e— )= 21— (e— u)lkgT residuej _of each pole V\{ith regpect to agregment fyitlover

Flem ) =27 em 1)iKe a specified range. Optimization for a particular type of den-

* 2 sity of states in order to reproduce the band energy would be
X Z 5 - - (9 possible. This might reduce computation time, but one would
=1 [(e=w)/kgT]"+[7(2j = 1)] have to be mindful of the fact that energies calculated with

An obvious distinction betweefy, andf is that the former different occupation functions probably cannot be used to
hasN/2 poles and the latter has an infinite number of polesevaluate energy differences. An approach based on such an
The Fermi function converges slowly in the number of polesoptimization of poles and residues provides the most general
included in Eq(9) so it is not feasible to simply truncate the set of possible occupation functions. In this work we inves-
sum at a convenient number. One possible approach for cotigate a more limited set generated by rational polynomial
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approximation of the exponential that appearén Several 80 ,
criteria will be imposed to reduce the number of candidate ¢
expressions to an even smaller set that can be described k 70 ¢ °

the number of poles in the upper half plane and the maxi-
mum deviation of the occupation function from zero at posi-
tive energies. 50 ° o

60 | ° ©

To simplify the presentation we will measure energy in & a0l R
multiples ofkgT from the chemical potential. Note that E ° ° .
N 30+ o o o o
X o o
-1 _ T o ©
frr—1=¢e"=lim 1+N , 20 f o o © 0 ggp
N— o0 o o B °
10 ¢ ° o % &
1 0 ®oo o
= lim LA lim N -140 -120 -100 80 -60 -40 -20 0 20
N— oo 1_ - N—o 1+ - Re(x)
N N

FIG. 1. Poles of theé} for N=16 andNy=0,2,4...,16. The
= lim IT,(1+ a;x) AN if 2 a;B;i=1. (10) pole; are in conc_entric rings encirclizer —16; Ny=0 is the larg-
i est ring;Ny=16 is the smallest.

N—o

We takeN to be finite (roughly between 8 and 64) and
r_estrlct ourselves tc_) choices of an_d B; that lead to func- accurate for energies above aboyt(N,y)=—4(2N— 12
tions that grow rapidly at largg. It is therefore convenient

. . . +67)/(1+ 7). At Xpor, T3 has dropped b~ °, about;%.
to separate the factors in the equation above according to tf@or?z(l th):a) functi)(()br?tdroNps rapidly?%ea(g ?N ¥) Al.:, ;‘, i(;
0 ' .

pared tofg in Fig. 2. These occupation functions are very

sign of ;. reduced the drop in the occupation function is less precipi-
tous and occurs at lower energy. As a result the occupation
BN BN, |, . . . . .
f;l_lzexz lim (1+ @ )" (1 + apx)™ (12) functions employing smallery remain valid over a wider
Noco (14 p1X) PN(L+ y,x) %2N. . . range. The fit td  nearx=0 also improves. Whey=0 the

second derivative agrees with thatfef at x=0. The choice
where >0, 6>0, andNZ;3;>NZX;5;. The poles offg y=0 therefore gives the best approximation for snjal
occur when this fraction is equal te 1. If, by raising the ¢ other choices yield better approximations over the whole
fraction to a power, it is converted into the ratio of two low yange that is of interest in calculations.
order polynomials the roots can be found by standard tech- Because values of smaller than 1 extend the range over

niques. If we restrict our selection to choices that allow the, hich £7 accurately reproduces: , smaller values oN can

poles of the occupation function to be determined by thgy, seq for a given bandwidth. The penalty for using smaller
solution of a quadratic equation the fraction must be reduce

: : . : is that the maximum at positive energies grows and moves
to the ratio of a quadratic to a linear function. We are therey, - iy energy. The low-energy tail of the occupation func-
fore limited to the form

tion also lengthens and may extend to core states. As men-

144\ N tioned in the introduction a different occupation function can
1+X it be used for the single-site core states. The appropriate occu-
F7-1_ 1~ 2N (12) pation for the single-site core states in this casé is=1
N 1 1—y\ N2 — . The single-site core electron density and eigenvalues
N
1
1—f 2N -1/2
7:1_2“&) +1 (13
fmax 0.8 r
1
fmax= . 14 06
max [4(1_’)/)_2_1]N/2+1 ( ) Q
We restrictN to be a multiple of 4; other values bf give 04
occupation functions that are either greater than 1 or negative
over some ranges. This approximation gives an occupatior oo |
function with a maximum ax=4N/(1— y?) of heightf ;.. )
It has a minimum of zero at=N/(1— vy) and a maximum of

one atx=—2N/(1+ ). In the limit y—1, f becomes the 0 ' :
200 -150 -100 -50 O 50 100 150

original approximation given in Eq.7). In Fig. 1, for the x
case of 16 poles the positions of the poles in the upper halt
plane are shown, for even valueshy, ranging from zero to FIG. 2. The Fermi function is compared f¢ for N=16 and

N. The corresponding functions on the real axis are comNy=0,2,4...,16.
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: : . : ' : FIG. 4. The real and imaginary parts gfz) are shown in the
80 -60 -40 20 0O 20 40 60

Re(x) upper half plane.
of the Green function at many points fairly close to the real
axis. It is preferable to integrate along the branch cut closest
to . This moves the integration away from the real axis to a

should be weighted bf..e, instead of one, since the other lr)eg|on whc_ere the Green fl_Jnct|o_n is smoother and can usually
e approximated by a ratio of linear functionszofin many

small contributions to the core density have already been T L
. . : . cases even a constant approximation is sufficient for ener
included in the residues df,. These residues account for PP %y

h banding f tractiofi ‘ h level differences. The coefficients of a rational fit can be deter-
the core banding for a fractiory(ecord, OF €ach core level,  inaq from values at the poléhis would have already been

€core- ThiS is an advantage. It eliminates the need for ansgcylated and two additional points along the branch cut
abrupt and arbitrary delineation between the valence ban parated from the pole by 2ksT. The integration should
and core states. , actually be performed on a contour displaced slightly down-
In order to determine a “best” value foy we considered \ard from the branch cut to avoid the singularity in the
the following. The functiorf} differs from f by an amount  gccupation function. It is computationally inexpensive to use
that can be expanded in powers oN1/ as many points as are required to converge the integral be-
cause only the fit must be reevaluated. We find it convenient

FIG. 3. The branch cut nearegtis shown forN=16, 32, and
48 with y=3— /8.

—x%e* 1) to integrate the singularity in the fit analyticall
Fo(X)— £7(x) = 1—6v+ 240l = g ingularity in the fit analytically.
F00 = R00= i L1767+ 7)70| 1
(15) V. EXAMPLE
The value ofy that gives the most rapid convergenceNins Visual comparison of the approximate occupation func-

3—/8 because it makes th®(1/N) term vanish. This tions tofg satisfies us that they can be used interchangeably.
choice is independent of the band structure and eliminateowever, our argument is that the stationarity of the free
the need or temptation to look for a value that optimizes anergy permits us to choose a very small valubl sésulting
particular calculation. For thig, the maximum at positive in an occupation function, with only a few poles, that may

energies is located at=4.IN and has a value of 2.2 significantly depart fronf - within the occupied band and yet
the impact on the free energy remains small. To demonstrate
IV. ENTROPY this we calculate the free energy for a nearest-neighbor,

single-band, tight-binding model for a one-dimensional chain
As alluded to in the introduction, evaluation of the en-for which the on-site Green function is

tropy requires integrals involving logarithms ©f as seen in

Eq. (6). We take the branch cut of the logarithm to be along 20 1

the negative real axis. This means that the entropy expres- g(z2)=—i— . (16
sion will have branch cuts where the phase of the approxi- w z- €\ ?

mation toe” goes through odd multiples af. These branch 1-4 W

cuts emerge fronz=—2N/(1+ y), pass through the poles,

and return to the real axis at=N/(1—1y). The branch cut This g(z) resemblegsee Fig. 4 that of a transition metal
nearesiu=0 for y=3— /8 is shown in Fig. 3 for the cases the band holds 10 electrons and has Van Hove singularities
N=16, 32, and 48. The integration required to evaluate thé&t the band edges. The band filling can be changed by ad-
entropy cannot be reduced to a sum of residues because Jg#sting € to move the band relative @, which is held fixed

the branch cuts. Fortunately the entropy is not required whil@t zero. In Fig. 5 we show the error in the free energy that
the charge is iterated to self-consistency. It is needed only faresults from using g,iig ® This approximation works very
the evaluation of the free energy. Furthermore the entropyvell, and only fails at large bandwidths; it fails first at large
integrand is zero except near, where it is sharply peaked. band filling. This occurs simply because the width of the
The most straightforward approach is to integrate along aweccupied band exceeds the range over which the approxima-
arc that begins att— 10KgT and ends aju— 10KgT span-  tion is valid, |x,.{. This particular modegj(z) is very unfor-

ning «. However, such a contour would entail the evaluationgiving in this regard because it has a singularity at the bot-
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FIG. 7. Error in free energy &=0 for N=16 as a function of

FIG. 5. Error in the free energy is shown fiie=16 as a func-  bandwidth and band filling.
tion of bandwidth and band filling. The curve in the base plane is

[Xpot/ (€/W)], which is the width at which the occupation function F(Teatd F[F(Tead + TS(Tead ]
deviates from one at the bottom of the band by akysét F(T=0)= cald ;ak) cald

tom of the band. Therefore, the effect from any deviation of

the occupation function from the exact form at the bottom of F(Tead + E(Teao

the band is accentuated. However, in most real systems the = > e, (17)

density of states at the bottom of the band is free-electron
like and goes smoothly to zero. Another feature in this plot i
a low broad ridge that begins at~60 at zero band filling
and moves to larger bandwidths as the filling increases. Thi
small ridge results when the peak fifj at positive energies
coincides with the top of the band. Even fd= 16 this is a
small error and we know from E@12) that the height of the
peak goes down exponentially with. IncreasingN to 32,
we obtain essentially the exact free energy; see Fig. 6.

S\Nhile the free energy is stationary with respect to the occu-
ation function the internal energy and entropy are not.
ence there are errors, first order in the occupation function,

that affect theT=0 free energy. We demonstrate that in

practice these errors are small by calculatifg(Ta0
+E(Tead/2] with £3=3; 8 and f for our model system; in

Fig. 7, we show the difference. The only region where dif-

Alternatively it is always possible to increase the tempera—fwere(;‘r(CeS are sti’gnigcar}t is_ flor . dbsngfs narrower q than
ture and thereby move this smaller peak to a position abov'e“1 BTca'_C' For bands of typical width this corresponds to
the “d bands” where it will have a smaller effect. Going to tr_ymg to find theT=0 energy from a calculation at a very
higher temperatures also extends the validityf pfto lower high temperature. If we increabkto 32 the error al =0 is

energies, thus accommodating wider bands. However, it igeduced to ess.ef‘“‘?‘”y. zero. _We do not ShQW a plot for this
case because it is indistinguishable from Fig. 6.

usually the free energy at absolute zero, or room tempera: . .
ture, or at least somewhere below melting that is desired. The entropy used to construct Fig. 7 was evaluated with

The computational advantage of calculating at highenust no.approximatipn tgg(z). The entropy gvaluated “S"."g a
be weighed against the error of extending the high_ratlonal approximation t@(z) as a function of bandwidth

temperature results to the temperature range of interest. Tlﬁ?@d filling is shown in Fig. 8. The entropy is reproduced

free energy at low temperature can often be accurately dete _cpurately for bandwidths exceeding10KgTcac. Below

mined because we are doing more than extrapolation. W is the width of the pccupation f_unct@on appr_oaches t_hat of
can calculate the free energy and entropy at a numericall € band and the rational approximationg{z) is not valid

convenient temperature and we know that the entropVy at ver the full integration range. A safe ap_proach is .to avoid
=0 is zero. The negative of the entropy is the derivative ofiémperatures above a tenth of the occupied bandwidth.

the free energy with respect o so we can make a quadratic o %51 & SR8t LR 00 S E s e o
fit to the free energy. This implies that @(T*) terms are 9 P P

small the energy at =0 is given by the average of the free both 1 and 0. Fof this happens only near, but for.fﬁ this
energy and the internal energy at any temperafligg,: -° also occurs far beloyw where the occupation function drops
.

0.05

FIG. 8. The error in entropy that results from using a rational
FIG. 6. Error in the free energy is shown fr=32 as a func- approximation tog(z) is shown. The occupation function used is
tion of bandwidth and band filling. fe.
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slowly from 1 to 0. The temperature ahtishould be chosen from the bottom of the band. This last and simplest option
so that at least the severest part of this drop is below thgives results that when plotted are indistinguishable from
bottom of the band. In Figs. 5, 6, and 7, the “entropy” from Fig. 7, which includes this entropy term. In light of this
the bottom of the band is included. This contribution is anobservation we propose that the entropy from the bottom of
artifact of the approximation and would not be preserfizif the band not be evaluated or evaluated with the constant
were used. Wherfij is used this entropy maintains the sta- approximation tay(z).
tionarity of the free energy. This entropy becomes non-
negligible and therefore an issue onlyNf is chosen such
that the bottom of the band is below the pokgt{N,y), in
the region wherd | begins to drop below 1. This situation =~ We have introduced a family of approximate occupation
would occur only when maximum computational speed isfunctions that accurately represent the Fermi occupation
being sought. function over the range of typical bands. It is demonstrated
We have several options for dealing with the situationfor a model system that the free energy at finite temperature
whenx,.(N,7y) is above the bottom of the band. First, we is given accurately and that a quadratic approximation to the
could calculate the contribution to the eigenvalue sum thatemperature dependence gives accurate zero-temperature en-
arises from the difference betwe&fandfg and not include  ergies. The use of these functions can reduce the amount of
the entropy from the bottom of the band; this would entailcomputation required for each iteration in the solution of the
calculations at additional energies and defeat the objective dfohn-Sham equations. Furthermore, calculation at finite
greater speed. Second, we could calculate the density é¢mperature often reduces the number of iterations required
states at a few points near the bottom of the band and evalie reach convergence.
ate the entropy based on either a constant, constant over
linear, or linear over linear approximation t{z) near the
pole of f{ nearest the bottom of the band. This procedure is
analogous to the evaluation of the entropy from the energy Work supported by Division of Materials Science, Office
range nearw and costs essentially no time if the constantof Basic Energy Sciences, U.S. DOE under Subcontract
approximation is adopted. Third, we could simply ignore theDEAC05-960R22464 with Lockheed Martin Energy Re-
first-order error introduced by failing to include the entropy search Corporation.

VI. CONCLUSIONS
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