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Real-space approach to the calculation of magnetocrystalline anisotropy in metals
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We have implemented the fully relativistic and spin-polarized extension of the locally self-consistent
multiple-scattering method. We have calculated the spin and orbital magnetic moments and magnetocrystalline
anisotropy energy of Fe, Ni, and Co in the face-centered-cubic~fcc! and hexagonal-close-packed~hcp! crystal
structures. We have obtained fast convergence of these quantities in real space. Moreover, these results
compare favorably with the results of conventionalk-space methods.@S0163-1829~98!00722-X#
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I. INTRODUCTION

The consideration of magnetic interactions in solidsrela-
tivistically leads to magnetocrystalline anisotropy that is o
of the important physical quantities that determine the te
nical magnetic properties of bulk metallic alloys1 and thin
films2–4 and is also of importance to the physics of hea
fermion systems.5 So far, first-principles quantum
mechanical calculations of the magnetocrystalline anisotr
have nearly all been carried out by usingk-space methods
designed for periodic systems. This however considera
limits the range of applications. In this paper we advoc
use of a real-space method that offers the hope of allow
us to perform spin-polarized relativistic total-energy calcu
tions in complex systems such as disordered alloys,
films, magnetic multilayers, and interfaces where nonp
odic effects, such as compositional inhomogeneities, lat
relaxations, strains, and noncollinear magnetizations, are
portant. Moreover, in the case of periodic systems, a r
space approach might provide a way of analyzing such p
erties as orbital magnetic moment and even such su
relativistic effects as the magnetocrystalline anisotropy.

In this paper we present the spin-polarized relativis
~SPR! implementation of the real-space locally se
consistent multiple-scattering~LSMS! method.6,7 A prelimi-
nary account of this work has recently been published.8 Al-
though in this paper we only present results for eleme
metals, the resulting SPR-LSMS method has the prop
that computational effort will scale linearly@O(N)#, with
system sizeN, in the same manner as the standard nonr
tivistic LSMS method. Consequently, the SPR-LSMS can
trivially extended to large (; hundreds of atoms! systems
using currently available massively parallel computers.
570163-1829/98/57~22!/14247~7!/$15.00
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In the LSMS method it is assumed that the Green funct
for each site in the solid can be obtained by considering o
multiple-scattering effects from a finite cluster of atoms,
ferred to as the local interaction zone~LIZ !, surrounding that
site. In the LSMS method the LIZ size is the central conv
gence parameter rather thank-point sampling as in conven
tional reciprocal space band-structure methods. As has b
pointed out previously, the convergence rate with respec
LIZ size depends on the quantity that is being calculated.
example, the electronic charge density is much more rap
convergent than the total energy. For fcc and bcc transi
metals, a LIZ consisting of one or two nearest-neighb
shells~NNS’s! is sufficient to converge the electronic char
density while, for simple cases~e.g., Cu, Zn!, a minimum of
five or six NNS’s are required to converge the total ener
and for more difficult cases~e.g., Mo! an even larger LIZ and
the use of a finite temperature, Harris-Foulkes-like, fre
energy functional7 and a fictitious electron temperature of
few thousand degrees is required to obtain convergence.
the magnetic moments of transition metals calculated w
the standard nonrelativistic local spin-density approximati
those of Fe and Co are obtained accurately with just two
three NNS’s, while no magnetic moment is found for Ni wi
a LIZ of less than four NNS’s after which it converges ra
idly to the result obtained using conventional band-struct
methods. Here, we make a detailed study of the converge
as a function of LIZ size of the spin and orbital moments a
magnetocrystalline anisotropy energy~MAE! of elemental
Fe ~bcc!, Ni ~fcc!, and Co ~fcc and hcp! using the SPR-
LSMS method and compare the results with standard m
ods.

The magnetocrystalline anisotropy energy of a transit
metal is a notoriously difficult quantity to calculate ink
14 247 © 1998 The American Physical Society
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14 248 57S. V. BEIDEN et al.
space.9–12 In some calculations in excess of 300 000k points
were required to converge the necessary Brillouin zone~BZ!
integrations.12 Special procedures such as the state track
method have been developed to obtain fasterk-space
convergence.14 With this method these authors studied t
contributions to the Brillouin zone integral from the vario
k-space regions. However, different BZ integration tec
niques can give rise to very different results, even to
extent of identifying different easy axes of magnetization

Recently, a self-consistent real-space recursion met
using a tight-binding linear muffin-tin orbital~TB-LMTO!
Hubbard Hamiltonian with spin-orbit coupling wa
implemented15 to study the MAE of thin Fe films on a
Cu~001! substrate. This study, coupled with our earl
results,8 indicates that real-space approaches have s
ciently rapid convergence to make the task of calculating
magnetocrystalline anisotropy possible. In addition, th
have the potential to make the identification of underlyi
mechanisms more transparent and also to allow us to in
tigate more complex systems.

In the past theO(N) behavior of the LSMS method6 has
allowed the investigation of a number of properties of co
plex systems based on large (25021000 atom! unit-cell
models of disordered and amorphous alloys. These inc
the calculation of the energies of random and short-ra
ordered Cu(12c)Znc ~Ref. 6! and Ni-richb-phase Ni(12c)Al c
alloys,16,17the study of the electronic structure and energe
of bulk amorphous metals,18,19 investigation of the nature o
screening and Coulomb correlations in random alloys,20,21

the study of magnetic short-range order in CuNi alloys,22 and
the study of noncollinear magnetism in NiFe alloys.23 Here
we extend its range of applicability by incorporating relat
istic effects that allow us to treat magnetocrystalline anis
ropy.

The organization of the paper is as follows. In the ne
section we discuss the formalism and computational imp
mentation of the relativistic LSMS. In Sec. III we study th
convergence of our method for bulk Fe, Co, and Ni, and
Sec. IV we present our conclusions.

II. METHOD

The real-space O~N! multiple-scattering method involve
self-consistent calculations in which the Poisson equatio
solved for the whole system, while the quantum-mechan
quantities such as electron density, the density of states,
thereby the total energy of a system, are obtained by solv
the multiple-scattering problem for a local interaction zo
centered on each of the atom sites. Thus the total elec
density, used in solving the Poisson equation, is given by
set of individual site densities7,6

r~r !5(
i

rM
i s i~r !, ~1!

wheres i(r … is the truncation function for the Voronoi poly
hedron that confines atomi , andM corresponds to the size o
the LIZ around sitei .

To calculaterM we have used the real-space relativis
spin-polarized scattering theory approach. The multip
scattering formula for the relativistic Green functio
g
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G(r ,r 8,E) has been discussed by Strangeet al.25,26 In the
vicinity of site i it can be written as

G~r ,r 8,E!5 (
L,L8

ZL
i ~r i ,E!†tM~@z# i ,E!‡L,L8

i ,i ZL8
i 3

~r 8i ,E!

2(
L

ZL
i ~r<,E!JL

i 3~r>,E!, ~2!

wherer i5r2Ri and the scattering path matrix for the clust
of the sizeM is

tM~@z# i ,E!5@TM
212gM#21. ~3!

Here L stands for the pair of relativistic quantum numbe
(k,m), 3 refers to taking the complex conjugate of the co
plex spherical harmonic term of Z,E is the one-electron
energy, and@z# i denotes a configuration of the cluster su
rounding the sitei . The real-space structure constants mat
gM consists ofM3M matrix subblocks that are calculate
with respect to sitei . The clustert matrix TM hasM nonzero
blocks on the diagonal, each of which corresponds to
single-site relativistic scattering matrixt i .25

Rajagopal and MacDonald and Vosko24 have shown that
the ground-state energy of relativistic many-electron syste
is a functional of the ground-state four current, and that
Kohn-Sham-Dirac equations after the Gordon decomposi
of the current and neglect of diamagnetic effects are

$2 i\cap1bmc21Ve f f@n~r !,m~r !#

1bsBe f f@n~r !,m~r !#2E%c i~r !50, ~4!

n~r !5( c i
1~r !c i~r !, ~5!

m~r !5( c i
1~r !bsc i~r !, ~6!

Ve f f@n~r !,m~r !#5Vext~r !1
dExc@n~r !,m~r !#

dn~r !

1e2E n~r 8!

ur2r 8]
dr 8, ~7!

Be f f@n~r !,m~r !#5~e\/2mc!S Bext1
dExc@n~r !,m~r !#

dm~r ! D .

~8!

Here c i(r ) is a four-component one-electron Dirac spino
Ve f f is an effective potential that is the sum of three term
an external potentialVext due to atomic nuclei, the relativis
tic exchange-correlation potential, and the electrostatic
tential. The matricesa andb are the standard Dirac matr
ces;s is the 434 Pauli matrix vector;Be f f is an effective
magnetic field consisting of an external magnetic field and
exchange correlation term that couples to the spin of
electron only. The functionsZL

i and JL
i of Eq. ~2! are, re-

spectively, properly normalized regular and irregular scat
ing solutions of the single-site Dirac equation correspond
to an incident wave in theL channel for the potential cen
tered at the sitei . For spin-dependent muffin-tin potential
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the spinor wave functionZL as well as single-sitet matrix
have a complicated structure of the formZL5(L8 ZL,L8,
where the contributions ZL,L8 satisfy a set of coupled
single-site Dirac equations. However, in almost all cases
sufficient to retain only two terms, i.e.,Zk,m> Zk,m;k,m
1 Z2k21,m;k,m .25,26

Once we have found the Green function@Eq. ~2!# we can
calculate such quantities as the density of states

n~E!5
21

p
Im E Tr G~r ,r ,E!d3r , ~9!

spin magnetic moment

mspin5
2mB

p
Im E d3r EEF

Tr bsG~r ,r ,E!dE, ~10!

and orbital magnetic moment

morb5
2mB

p
Im E d3r EEF

Tr bLG~r ,r ,E!dE, ~11!

where the trace is over spin space andL is the orbital mo-
ment operator. The charge density, which is needed to
form self-consistent calculations, is defined as

r~r !5
21

p
Im EEF

Tr G~r ,r ,E!dE. ~12!

The total energy then has been calculated as

Etot5(
i

occ

e i2
1

2E E r~r !r~r 8!

ur 2r 8u
d3rd3r 81Exc@r↑ ,r↓#

2(
s

E Vxc,s~r !rs~r !d3r , ~13!

wherer5r↑1r↓ and we have used a nonrelativistic form
the exchange-correlation potentialVxc,s , where the total
spin-up and spin-down potentialsVs are related to theVe f f

andBe f f potential terms occurring in the Dirac equation v

Ve f f~r !5
~V↑1V↓!

2
, ~14!

Be f f~r !5
~V↑2V↓!

2
. ~15!

Due to the variational character of the expression for the t
energy in density-functional theory, the main contribution
the change in the total energy upon rotation of the magn
zation direction comes from the change in the sums over
occupied single-particle energies

DE~ n̂, n̂8!5(
i

occ

e~ n̂! i2(
i

occ

e~ n̂8! i , ~16!

where n̂ and n̂8 are arbitrary magnetization directions. Th
is the essence of the force theorem and gives a formal ju
fication for calculating MAE as a difference between sing
particle eigenvalue sums. It has been noticed by Daalde
and co-workers3 that subtractions of two total energies, d
termined from two self-consistent calculations, but us
is

r-

al

ti-
e

ti-
-
op

g

spherically symmetric charge densities in the total-den
calculation, will not necessarily give a more accurate ans
than the force theorem. We have calculated the Fermi ene
for every magnetization directionn̂, since the procedure o
assuming common Fermi energies for all magnetization
rections is not always justified.3

Since the values of MAE for bulk metals are extreme
small, being of the order of severalmeV, we are interested in
a method that would allow one to get the necessary accu
with the least effort. Almost all calculations of the MAE fo
bulk materials that we are aware of have been carried ou
using k-space band-structure methods, in which a lot of
tention must be given to the BZ integration, in particular
the partitioning of the BZ. The main difficulty of this ap
proach is that this integration is very slowly convergent. F
example, as it has been shown in Ref. 4, a converged sin
particle sum to the accuracy required for the calculation
the MAE of Ni and Fe requires use of several millions ofk
points. To avoid the use of such a huge number ofk points,
schemes for interpolation of the BZ integral have been
veloped. The state tracking procedure introduced in Ref.
uses the information about the changes of the band struc
with increase of the spin-orbit interaction to do such interp
lation. However the accuracy of this method is not alwa
clear.14

In the real-space approach we avoid BZ integration a
thus are able to calculate the MAE for any possible direct
of magnetization. Construction of the scattering matrix7 at
each site requires an inversion of a matrix whose size
( l max11)23M , whereM is the size of the cluster include
in the LIZ. There are several possibilities to reduce the co
putational effort needed to invert such a matrix. One pos
bility is to reduce the maximum value of the on-site angu
momentum cutoffl max as we go further out in real space, s
that the total size of the matrix is reduced. As has be
shown in many cases, it suffices to putl max53 on the first
two shells of the cluster, cuttingl max to 2 or less for the res
of the LIZ.7 In all our calculations we have putl max53 on
the first three shells, while for the rest of the clusterl max
52 has been used. Furthermore, due to the symmetry p
erties of periodic systems, the scattering matrix becom
rather sparse, so that taking this into account by usin
special package designed for linear algebra calculation
sparse matrices, we can further reduce the computationa
fort. Combining these we speed up the calculations b
factor of 2 for the hcp Co calculations with a local intera
tion zone containing 81 atoms.

It is crucial for the method that the convergence of t
total energy with respect to the size of the LIZ is sufficien
fast to make the calculation feasible.8,7 As it has been
shown,7 four shells of scatteres, corresponding toM555,
results in an error of less than 1 mRy in case of fcc C
However the question remains as to how far we should g
get a convergence within the value of the MAE of bulk me
als, i.e.,meV. Fortunately, it does not seem to be importa
to get such a good convergence in the absolute value of
total energy to obtain reasonable results for the MAE. Thi
because the MAE is determined as an energy difference
that we have to check the convergence of eigenvalue
difference for a particular LIZ. This we discuss in the ne
section.
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III. RESULTS AND DISCUSSION

In Fig. 1 we show for Fe the convergence of the sp
moment, orbital moment, and the ratio of the orbital to s
moments as a function of the LIZ size. We note that for
spin moment the value obtained with a LIZ of only one sh
~13 atoms! is within 7% of the value for six shells~65 at-
oms!. Therefore, only slight improvement is obtained by i
cluding up to five additional shells. For the orbital mome
the one shell result differs from the six shells result by 20
while the five shells~59 atoms! result is within 2% of the
result for six shells. Clearly, the spin and orbital mome
have different convergence properties, the orbital mom
being more sensitive to the environment. For the case of
ratio of the orbital to spin moments, the one shell res
differs from the six shells result by 12%. Furthermore, t
five and six shells results are essentially identical, imply
that the ratio is well converged after six shells.

In Table I we show our results for the spin and orbi
moments together with literature values obtained usingk-
space methods and together with experimental values.
can see that our values of 2.08mB and 0.041mB for spin and
orbital moments, respectively, compare very well with t
k-space results. Indeed, our results are in excellent ag

TABLE I. Spin and orbital moments of BCC Fe. The expe
mental data stem from magnetomechanical~Ref. 32! and magnetic
circular x-ray dichroism~MCXD! ~Ref. 33! measurements.

ms(mB) mo(mB) Method Reference

2.16 0.048 LMTO 9
2.21 0.053 SPR-LMTO 27
2.19 0.059 LMTO 28
2.19 0.091 LMTO1OPC
2.19 0.049 FP-LMTO 11
2.19 0.078 FP-LMTO1OPC
2.16 0.050 FLAPW 30
2.08 0.056 SPR-KKR 31
2.08 0.041 SPR-LSMS This work
2.08 0.092 Expt. 32
2.02 0.087 Expt. 33

FIG. 1. Convergence of the spin and orbital magnetic mome
and the ratio of orbital to spin moments as a function of the LIZ s
for BCC Fe~lattice spacing: 5.27 Bohr!.
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ment with thek-space equivalent of our method, namely, t
spin-polarized relativistic Korringa, Kohn, and Rostok
~SPR-KKR! method, for which the corresponding values a
2.08mB and 0.056mB .31

The magnetocrystalline anisotropy results from the to
energy difference between the easy and hard magnetiza
axes. For bulk transition metal magnets Fe, Co, and Ni i
very small and, consequently, difficult to calculate using
k-space methods. As can be seen from the results of prev
calculations displayed in Fig. 2, it is possible to obta
widely different values for this quantity even within differen
implementations of the same band-structure method, so
times to the point of obtaining the wrong sign. Since, t
anisotropy energy is only of the order ofmeV’s, one might
presume such a quantity to be beyond the scope of the a
racy of the real-space methodology used in this paper, wh
for six shells, the absolute convergence of the total energ
only ;1 mRy. However, if the truncation errors affect th

FIG. 3. Angular dependence of MAE in BCC Fe. Full circles a
the seven calculated values. The full line is a least-square
through these points.

ts
e

FIG. 2. Convergence of the magnetocrystalline anisotropy
ergy as a function of the LIZ size for BCC Fe~lattice spacing: 5.27
Bohr!. Results of previous calculations SPR-LMTO~Ref. 27!,
LMTO ~Ref. 28!, FP-LMTO ~Ref. 11!, FP-LMTO-OPC~Ref. 11!,
KKR-ASA ~Ref. 34! are marked on the right-hand side of the fi
ure. Experiment is indicated by the dot-dash line.
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TABLE II. Magnetocrystalline anisotropy energy, spin and orbital moments of FCC Ni.

This work
shells ms(mB) mo(mB) E~001!-E~111! @meV#

4 0.51 970 0.0367 0.408
6 0.59 582 0.0463 -0.544
7 0.54 558 0.0444 -0.434
Method ms(mB) mo(mB) E~001!-E~111! @meV#

SPR-LMTO ~Ref. 9! 0.59 800 0.044 -0.500
SPR-LMTO ~Ref. 10! 0.601 00 0.051 -2.700
SPR-KKR ~Ref. 34! 0.110
FP-LMTO ~Ref. 11! 0.6085 0.0457 -0.5
FP-LMTO1OPC ~Ref. 11! 0.6109 0.0655 0.5
Expt. ~Ref. 35! 0.57 000 0.05 2.700
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easy and hard axis energies in the same way, it may stil
possible to obtain a reliable anisotropy energy. As we s
see now, this appears to be the case, suggesting that or
of the magnetocrystalline anisotropy are relatively local
real space.

We have calculatedDE(@001#,@111#) for LIZ sizes from
one to six shells. For each LIZ size we converge the o
electron term to an accuracy of 1029 Ry. Our results are
shown in Fig. 2 together with the results of previous calc
lations using conventionalk-space methods. We note that a
attempt to calculateDE(@001#,@111#) by means of thek-
space equivalent of our method, namely, the SPR-K
band-structure method, with a non-self-consistent poten
yielded an unrealistic value of145.0meV.12 However, in
another SPR-KKR calculation34 with common Fermi ener-
gies and within the atomic sphere approximation yielde
value of20.95meV, very close to our result of20.78meV.
Noteworthy is that, in our calculation, the sign, one of t
major sources of contention between the variousk-space cal-
culations, is independent of the number of shells up to
shells.

The power of the real-space approach is illustrated in F
3 where we plot the MAE as a function of angleu between
the magnetization direction and thez axis ~@001#!. These
calculations were done for a LIZ of 5 shells or 59 atom
with angular momentum cutoffs ofl max54 on the central
atom, l max53 on the first three shells, andl max52 on the
final two shells of the LIZ. Such a LIZ, we showed abov
e
ll
ins

-

-

l,

a

ix

.

,

,

converged the MAE between the@001# and@111# directions.
We compare ourab initio values with a phenomenologica
expression E(u)5K1@sin2u2(0.752K2 /K1)sin4u#
1O(sin6u).13 From the least-squares fit of our sevenab ini-
tio calculated values we evaluateK2 /K1 to be around 0.35,
which is in reasonable agreement with experimental val
around 0.1.13 This demonstrates that our method has the p
sibility to determine the ratio of the anisotropy constantsK1
andK2.

For Ni, Table II, we find that we need at least four she
of atoms to obtain a magnetic moment. The values of orb
and magnetic moments at the fourth shell are reason
close to the values for the six and seven shell calculatio
We observe again that different calculations give differe
signs for the value of MAE. In our calculations the sign
the MAE changes as we increase the LIZ from four shells
six shells. This contrasts with the results on bcc Fe and
Co where no sign change occurs as a function of LIZ. Ho
ever, further increasing the LIZ to seven shells does
change the sign anymore. While this cannot be construe
converged, it is satisfactory to see agreement with the S
LMTO calculations.3,11 Comparing our results with thek-
space equivalent of our method, SPR-KKR,34 we note that in
comparison to the Fe calculations the agreement is less
isfactory.

For fcc Co~see Table III! we find fast convergence of th
spin and orbital moments and the MAE. This situation
reminiscent of the Fe results of Fig. 1. The orbital and s
TABLE III. Magnetocrystalline anisotropy energy, spin, and orbital moments of FCC Co.

This work
shells ms(mB) mo(mB) E~001!-E~111! @meV#

1 @13# 1.4160 0.0725 1.100
4 @55# 1.5812 0.0741 0.950
6 @87# 1.5900 0.0740 1.050
Method ms(mB) mo(mB) E~001!-E~111! @meV#

SPR-LMTO ~Ref. 10! 1.594 0.073
FP-LMTO ~Ref. 11! 1.6184 0.0745 0.5
FP-LMTO1OPC ~Ref. 11! 1.6187 0.1180 2.2
SPR-KKR ~Ref. 34! 0.86
Experiment~Ref. 36! 1.300
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14 252 57S. V. BEIDEN et al.
moments are converged to 0.5% and 0.1%, respectively
ter 4 shells. The result for the MAE is most interesting.
value of 1.050meV is comparable to the result of 0.86meV
obtained with the SPR-KKR,34 however it is twice as big as
the FP-LMTO result of 0.5meV. The present result come
within 20% of the experimentally deduced value of 1.3, su
gesting that in the case of Co the inclusion of orbital pol
ization correction11 might not be necessary.

Surprisingly, we find for hcp Co a much slower conve
gence of spin and orbital moment than encountered in an
our previous calculations for bcc Fe, fcc Ni, and fcc Co. F
instance, the spin moment is only converged up to 4.
when comparing the results of 51 atoms with 81 atoms. I
worse for the orbital moment where the same compari
gives only a convergence of 16%. It should therefore co
as no surprise that we did not manage to converge the M
Sign changes occur frequently and still occur between 51
81 atoms. These results might be a consequence of th
duced symmetry since hcp has a lower symmetry than
fcc and bcc structures that we previously studied. Moreo
our calculations were performed for the experimentalc/a
ratio that is 0.7% smaller than the idealc/a ratio. This fur-
ther reduced the symmetry. Another possible source of c
vergence problems might be associated with the angular
mentum cutoff. A SPR-LMTO~Ref. 9! ~Table IV! shows
that the spin and orbital moments still change substanti
on going from l max52 to l max53 and the MAE even
changes sign. In our calculations we usel max53 up 33 at-
oms and beyond thisl max52 that we found to be sufficiently
convergent.

IV. CONCLUSIONS

In summary, we have presented a real-space approac
performing relativistic spin-polarized electronic structu

TABLE IV. Magnetocrystalline anisotropy energy, spin, and o
bital moments of HCP Co.

This work
shells ms(mB) mo(mB) E~0001!-E~1010! @meV#

2 @13# 1.496 0.074 -10.8
3 @19# 1.586 0.077 12.1
5 @33# 1.708 0.065 123.7
6 @39# 1.686 0.066 -106.0
7 @51# 1.643 0.069 63.2
10 @81# 1.572 0.082 -100.0
Method ms(mB) mo(mB) E~0001!-E~1010! @meV#

SPR-LMTO ~Ref. 9!
spd 1.6100 0.085 -29
spdf 1.5700 0.079 16
Expt. ~Ref. 36! 1.5900 0.16 -65
f-

-
-
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r
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nd
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o-

ly

for

calculations. We have used the method to calculate the
and orbital magnetic moments of Fe, Ni, and Co. The
quantities appear to be sufficiently rapidly convergent
make their calculation in real space tractable. In addition,
have calculated the magnetocrystalline anisotropy ene
We have found that if the spin and orbital moments co
verged rapidly, so did the MAE. This was the case for bcc
and fcc Co. For fcc Ni it took 55 atoms to build up a ma
netic moment and we needed a bigger number of atom
converge the spin and orbital moments and the MAE. Cob
in the hcp structure was the worst case we have studie
far, and for 81 atoms neither the spin and orbital mome
nor the MAE are converged.

In case of hcp Co, the magnetic anisotropy is considera
larger than in cubic systems, because of reduced symm
Thus one might expect that the calculations should be ea
However, as our calculations for the hcp Co show, neit
the magnetic moment nor the magnetocrystalline anisotr
energy converge well for the LIZ sizes that are sufficient
systems with cubic symmetry. To understand this result
to improve the convergence, we are now implement
screened structure constants techniques.29 These will allow
us to construct the larger LIZ’s needed for hcp Co and, t
lesser extent, fcc Ni. These techniques result in reason
sparse matrices whose inverse can be calculated by spec
designed sparse matrix algorithms, allowing one to deal w
considerably larger clusters. The power of the real-sp
method lies in the possibility of considering nonperiodic sy
tems or systems with reduced symmetries. Thus, the ques
of real-space convergence for such systems is crucial for
method and we will discuss it in more detail in future pu
lications.

Our preliminary experience with the screening techniqu
indicates that calculations for LIZ’s of several hundreds
atoms can be routinely performed on typical workstatio
Since the methodology is by construction of orderN, it
opens up a possibility of studying spin and orbital mome
and magnetocrystalline anisotropy in complex inhomo
neous systems such as magnetic multilayers with interf
roughness and disordered alloys.
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