
Cray Inc. Proprietary - Not for Public Disclosure 1

Cray X1
Basic Optimization

Techniques

Nathan Wichmann

wichmann@cray.com

Cray Inc. Proprietary - Not for Public Disclosure 2

Outline

• Important X1 Features

• Cray X1 programming models

• Vectorization

• Multi Streaming

• Example

Cray Inc. Proprietary - Not for Public Disclosure 3

• Vector Processor Core
• Multi-streaming processor
• 32 Vector Registers

– Allows for more unrolling and other
optimizations

– Significantly reduced “spills” in large body
loops

• Vector “Mask”
– Controls operations under “if’s” in vector

loop
– Allows more loops to be vectorized.

Important X1 Features

Cray Inc. Proprietary - Not for Public Disclosure 4

• Decoupled Scalar-Memory-Vector model

– In stride-1 code, processor can hide ALL of
the memory latency

• Globally addressable memory (Think T3E)

• High Bandwidth, Low Latency network

• Support for 32-bit floating point arithmetic

– Higher Peak; Less Memory Bandwidth
Required

Important X1 Features

Cray Inc. Proprietary - Not for Public Disclosure 5

Cray X1 Programming Models

• The Cray X1 is first and foremost a state-of-the-
art Vector processors

• The X1 SMP node consists of 4 Multi Stream
Processors (MSPs) or 16 SSPs
– Within the MSP, four SSP can be controlled with

very low synchronization

• The X1 nodes interconnect has the highest
bandwidth in the industry. Latency is
comparable to the best in the industry
– Co-array Fortran gives the X1 a tremendous

advantage over other MPP systems.

Cray Inc. Proprietary - Not for Public Disclosure 6

Cray X1 Code Preferences

• Loops with No Parallel Dependencies

- Vectorize and stream well

- Fewer dependencies equal more compiler optimizations

• Perfectly Nested Loops
- Once again; more perfect nesting equals more compiler

optimizations, and maintains de-coupling for memory
latency hiding

• Stride-1 Stores (and Loads)

• Large Loop Bodies

Cray Inc. Proprietary - Not for Public Disclosure 7

Level 1: Vectorization
where are you coming from?

• if coming from microprocessor code…

– if necessary, restructure code to place nested loops
of parallelism in routines (next page)

– strive for reasonable loop lengths, N > 50

– cache blocking may be good for X1, but not if VL <
~50

• if coming from SX6 code…

– might be ok. But, may want to re-order loops to
reduce #Vloads per flop by vectorizing outer loops,
etc.

– extremely long inner vector loops sometimes cause
poor cache performance  stripmine vector loop

Cray Inc. Proprietary - Not for Public Disclosure 8

Peformance in hand of code
developers, cont.

• Bad for X1

 do ie = 1,nelem

 call small_work(x(1,1,ie),…)

 enddo

 subroutine small_work(a, b,..)

 do j = 1,n  n ~ 4-8

 do I = 1,m  m ~ 4-8

 …few flops…

 enddo;enddo

 end

• Good for X1

 call big_work(x, m, n, nelem)

 subroutine big_work(x, m, n, .)

 do ie = 1, nelem

 do j = 1,n

 do I = 1,m

 …many flops…

 enddo;enddo;enddo

 end

Cray Inc. Proprietary - Not for Public Disclosure 9

Level 1 Optimizations-- vectorization
• reasons why compiler cannot vectorize loops

– recurrences:

• x(I) = x(I-1)+…

– subscript ambiguities:

• x(I+K) = x(I)+…  sign of K unknown

• x(ind(I)) = x(ind(I)) + b(I)  repeated indices for ind(I)?

– subroutine calls, system calls (I/O)

– spaghetti code -- complicated branching

• try to eliminate these problems
– isolate recurrences from other code, different algorithm?

– !dir$ concurrent, if no real dependencies [#pragma concurrent]

– inline subroutines, eliminate or move system calls to separate loop

– is spaghetti code necessary? Can outer loop parallelism be brought
inside branching code?

Cray Inc. Proprietary - Not for Public Disclosure 10

MSP vs. SSP

• Big Question:

 When to Use the MSP vs. the SSP?

• First Review Advantages / Disadvantages
of Each

Cray Inc. Proprietary - Not for Public Disclosure 11

MSP: Advantages & Disadvantages

• Advantages:
- more powerful processor – good if app has limited processor-level
parallelism

- attacks new level of parallelism, sometimes

- improves “surface to volume” ratio for many DM jobs

- reduces number of PEs during barriers and global communications

• Disadvantages:
- application may not have much stream parallelism

 - requires compiler to recognize and exploit yet another level of
parallelism

Cray Inc. Proprietary - Not for Public Disclosure 12

• Advantages:

- “4 times” the number of processors

- Well suited to apps that already exhibit extreme scaling

• Disadvantages:
- “4 times” the number of processors

- Not well suited to apps that do not exhibit extreme scaling

SSP: Advantages & Disadvantages

Cray Inc. Proprietary - Not for Public Disclosure 13

When to Use MSP vs. SSP

Think About Using…

• MSP when:

- You know code does not scale “as high as you want”

- The compiler does a good job of finding additional
parallelism for MSP

• SSP when:

- Code is known to scale to very high processor counts

- Compiler does not do a good job of finding additional
parallelism for MSP

Cray Inc. Proprietary - Not for Public Disclosure 14

Level 1 Optimizations -- streaming

• reasons why compiler cannot stream loops
– problem: data dependencies between SSPs

do j = 1,n-1

 x(1:m,j) = x(1:m,j+1) + b(1:m,j)  stream j+1 not independent of stream j

• compiler streams and vectorizes 1:m – OK if m large

– solution: vectorize j, stream 1:m

!dir$ prefervector

do j = 1,n-1

 x(1:m,j) = x(1:m,j+1) + b(1:m,j)

– problem: local work array not SSP private

dimension a(100)  compiler will privatize automatically

dimension a(N)  compiler will not privatize automatically

do j = 1,n  want to stream over j but can’t because a(1:m) independent of j

 a(1:m) = c(1:m,j)

. . . use a(1:m) . . .

Cray Inc. Proprietary - Not for Public Disclosure 15

Level 1 Optimizations -- streaming

– solution: manually privatize a(1:m)

dimension a(N,4)  local work array replicated explicitly or via CSD’s

!dir$ preferstream

do issp = 1,4

 do j = issp,n,4

 a(1:m, issp) = c(1:m,j)

. . . Use a(1:m,issp) . . .

– problem: subroutine calls

do j = 1,n

 call work(j)  compiler unsure if work(j) can be executed in MSP mode

Cray Inc. Proprietary - Not for Public Disclosure 16

Level 1 Optimizations -- streaming

– solution: use CSD & compile ftn … -Ogen_private_callee work.f

!CSD$ PARALLEL DO PRIVATE (..)

do j = 1,n

 call work(j)

enddo

!CSD$ END PARALLEL DO

• cc … -hgen_private_callee work.c

#pragma csd parallel for private (…) schedule(static,1) { }

– problem: updates of shared variable in loop

count = count + 1

– solution: put in critical region directives

do j = 1,n

!CSD$ critical [#pragma csd critical { }]

count = count + 1

!CSD$ end critical

Cray Inc. Proprietary - Not for Public Disclosure 17

Vectorization / Streaming
Short Examples

• Perfect loop nest

• False Dependencies on Temp Arrays

• Gather/Scatter

Cray Inc. Proprietary - Not for Public Disclosure 18

Perfect nest: Loop Interchange

ir------< do j = 1,200

ir MVs--< do i = 1,200

ir MVs a(i) = a(i) + b(i,j) * c(j)

ir MVs--> end do

ir------> end do

Compiler can interchange streamed loops

Compiler can “hoist” a(i) after interchange

Cray Inc. Proprietary - Not for Public Disclosure 19

False Dependence on Temp Array

common /something/ atemp(n)

do j = 1,m

 do i = 1, n

 atemp(i) = sqrt(b(i,j))

 c(i,j) = c(i,j) + atemp(i)

enddo; enddo

• Inner loop vectorizes

• Outer loop does not stream due to false dependence on
atemp

Cray Inc. Proprietary - Not for Public Disclosure 20

NO False Dependence on Temp Scalar Variable

real stemp
do j = 1,m
 do i = 1, n
 stemp = sqrt(b(i,j))
 c(i,j) = c(i,j) + stemp
enddo; enddo
• Inner loop vectorizes
• Outer loop streams; More efficient
• May manually fuse loops to remove temporary arrays

Cray Inc. Proprietary - Not for Public Disclosure 21

Vector Code Type: Gather/Scatter Loops

• Must be told that the loop is parallel (if possible) to achieve
best performance

• Use “!dir$ concurrent” directive

• If “concurrent”, compiler can do multiple optimizations

• Concurrent Gather/Scatter loops should perform very well
on the Cray X1

Cray Inc. Proprietary - Not for Public Disclosure 22

Gather/Scatter Kernel: What developer should write

!dir$ concurrent

do i = 1, n ! Loop will Vectorize, Stream, and Unroll

 a(indx(i)) = a(indx(i)) + b(i)

enddo

