Cray X1

Basic Optimization
Techniques

Nathan Wichmann
wichmann@cray.com

CRRANY

Cray Inc. Proprietary - Not for Public Disclosure 1



Outline

* Important X1 Features

* Cray X1 programming models
* Vectorization

* Multi Streaming

 Example

CRRANY

Cray Inc. Proprietary - Not for Public Disclosure 2



Important X1 Features

Vector Processor Core
Multi-streaming processor
32 Vector Registers

— Allows for more unrolling and other
optimizations

— Significantly reduced “spills” in large body
loops

Vector “Mask”

— Controls operations under “if’s” in vector
loop

— Allows more loops to be vectorized.

CRRANY

Cray Inc. Proprietary - Not for Public Disclosure 3



Important X1 Features

Decoupled Scalar-Memory-Vector model

— In stride-1 code, processor can hide ALL of
the memory latency

Globally addressable memory (Think T3E)
High Bandwidth, Low Latency network
Support for 32-bit floating point arithmetic

— Higher Peak; Less Memory Bandwidth
Required

CRRANY

Cray Inc. Proprietary - Not for Public Disclosure 4



Cray X1 Programming Models

 The Cray X1 is first and foremost a state-of-the-
art Vector processors

« The X1 SMP node consists of 4 Multi Stream
Processors (MSPs) or 16 SSPs
— Within the MSP, four SSP can be controlled with
very low synchronization
 The X1 nodes interconnect has the highest
bandwidth in the industry. Latency is
comparable to the best in the industry

— Co-array Fortran gives the X1 a tremendous
advantage over other MPP systems.

CRRANY

Cray Inc. Proprietary - Not for Public Disclosure 5



Cray X1 Code Preferences

Loops with No Parallel Dependencies

- Vectorize and stream well
- Fewer dependencies equal more compiler optimizations

Perfectly Nested Loops

- Once again; more perfect nesting equals more compiler
optimizations, and maintains de-coupling for memory
latency hiding

Stride-1 Stores (and Loads)
Large Loop Bodies

CRRANY

Cray Inc. Proprietary - Not for Public Disclosure 6



Level 1: Vectorization
where are you coming from?

* if coming from microprocessor code...

— if necessary, restructure code to place nested loops
of parallelism in routines (next page)

— strive for reasonable loop lengths, N > 50

— cache blocking may be good for X1, but not if VL <
~50
 if coming from SX6 code...
— might be ok. But, may want to re-order loops to

reduce #Vloads per flop by vectorizing outer loops,
etc.

— extremely long inner vector loops sometimes cause
poor cache performance = stripmine vector loop

CRRANY

Cray Inc. Proprietary - Not for Public Disclosure 7



Peformance in hand of code
developers, cont.

« Bad for X1 « Good for X1
do ie = 1,nelem call big_work(x, m, n, nelem)
call small_work(x(1,1,ie),...)
enddo subroutine big_work(x, m, n, .)
subroutine small_work(a, b,..) do ie =1, nelem
doj=1,n
doj=1,n < n~4-8 dol=1m
dol=1m € m~4-8 ...many flops...
...few flops... enddo;enddo;enddo
enddo;enddo end
end

CRRANY

Cray Inc. Proprietary - Not for Public Disclosure 8



Level 1 Optimizations-- vectorization

- reasons why compiler cannot vectorize loops

o x(I) = x(I-1)+...

* X(I+K) = x(1)+... < sign of K unknown
 X(ind(l)) = x(ind(l)) + b(I) < repeated indices for ind(l)?

- try to eliminate these problems
— isolate recurrences from other code, different algorithm?
— 1dir$ concurrent, if no real dependencies [#pragma concurrent]
— inline subroutines, eliminate or move system calls to separate loop

— is spaghetti code necessary? Can outer loop parallelism be brought
inside branching code?

CRRANY

Cray Inc. Proprietary - Not for Public Disclosure 9



MSP vs. SSP

» Big Question:
When to Use the MSP vs. the SSP?

* First Review Advantages / Disadvantages
of Each

CRRANY

Cray Inc. Proprietary - Not for Public Disclosure 10



MSP: Advantages & Disadvantages

 Advantages:

- more powerful processor — good if app has limited processor-level
parallelism

- attacks new level of parallelism, sometimes
- improves “surface to volume” ratio for many DM jobs
- reduces number of PEs during barriers and global communications

* Disadvantages:

- application may not have much stream parallelism

- requires compiler to recognize and exploit yet another level of
parallelism

CRRANY

Cray Inc. Proprietary - Not for Public Disclosure 11



SSP: Advantages & Disadvantages

 Advantages:

- “4 times” the number of processors
- Well suited to apps that already exhibit extreme scaling

- Disadvantages:

- “4 times” the number of processors
- Not well suited to apps that do not exhibit extreme scaling

CRRANY

Cray Inc. Proprietary - Not for Public Disclosure 12



When to Use MSP vs. SSP

Think About Using...

* MSP when:
- You know code does not scale “as high as you want”

- The compiler does a good job of finding additional
parallelism for MSP

 SSP when:
- Code is known to scale to very high processor counts

- Compiler does not do a good job of finding additional
parallelism for MSP

CRRANY

Cray Inc. Proprietary - Not for Public Disclosure 13



Level 1 Optimizations -- streaming

- reasons why compiler cannot stream loops

— problem:
doj=1,n-1
x(1:m,j) = x(1:m,j+1) + b(1:m,j) < stream j+1 not independent of stream |
- compiler streams and vectorizes 1:m — OK if m large

— solution: vectorize j, stream 1:m
Idir$ prefervector
doj=1,n-1
x(1:m,j) = x(1:m,j+1) + b(1:m,j)
— problem:
dimension a(100) < compiler will privatize automatically
dimension a(N) < compiler will not privatize automatically
doj=1,n < wantto stream over j but can’'t because a(1:m) independent of |

a(1:m) = c(1:m,j)

. usea(l:m)...

CRRANY

Cray Inc. Proprietary - Not for Public Disclosure 14



Level 1 Optimizations -- streaming

— solution: manually privatize a(1:m)
dimension a(N,4) < local work array replicated explicitly or via CSD’s
Idir$ preferstream
doissp=14
doj =issp,n,4

a(1:m, issp) = c(1:m,j)

... Use a(1:m,issp) ...

— problem:
doj=1,n

call work(j) < compiler unsure if work(j) can be executed in MSP mode

CRRANY

Cray Inc. Proprietary - Not for Public Disclosure 15



Level 1 Optimizations -- streaming

— solution: use CSD & compile ftn ... -Ogen_private callee work.f
ICSD$ PARALLEL DO PRIVATE (..)
doj=1,n
call work(j)
enddo
ICSD$ END PARALLEL DO
» cC ... -hgen_private callee work.c
#pragma csd parallel for private (...) schedule(static,1) { }
— problem: updates of shared variable in loop
count = count + 1
— solution: put in critical region directives
doj=1,n
ICSD$ critical [ #pragma csd critical { } ]

count = count + 1
ICSD$ end critical

CRRANY

Cray Inc. Proprietary - Not for Public Disclosure 16



Vectorization / Streaming
Short Examples

» Perfect loop nest
« False Dependencies on Temp Arrays
» Gather/Scatter

CRRANY

Cray Inc. Proprietary - Not for Public Disclosure 17



Perfect nest: Loop Interchange

Ir---—-- < doj=1,200

ir MVs--< doi=1,200

ir MVs a(i) = a(i) + b(i,j) * c(j)
ir MVs--> end do

Ir------ > end do

Compiler can interchange streamed loops
Compiler can “hoist” a(i) after interchange

CRRANY

Cray Inc. Proprietary - Not for Public Disclosure 18



False Dependence on Temp Array

common /something/ atemp(n)
doj=1m
doi=1,n
atemp( 1) = sqrt( b(i) )
c(i,J) = c(i,j) + atemp(i)
enddo; enddo
* Inner loop vectorizes

 Quter loop does not stream due to false dependence on
atemp

CRRANY

Cray Inc. Proprietary - Not for Public Disclosure 19



NO False Dependence on Temp Scalar Variable

real stemp
doj=1m
doi=1,n
stemp = sqrt( b(i,)) )
c(i,j) = c(1,)) + stemp
enddo; enddo
* Inner loop vectorizes
 Quter loop streams; More efficient
» May manually fuse loops to remove temporary arrays

CRRANY

Cray Inc. Proprietary - Not for Public Disclosure 20



Vector Code Type: Gather/Scatter Loops

Must be told that the loop is parallel (if possible) to achieve
best performance

Use “Idir$ concurrent” directive
If “concurrent”, compiler can do multiple optimizations

Concurrent Gather/Scatter loops should perform very well
on the Cray X1

CRRANY

Cray Inc. Proprietary - Not for Public Disclosure 21



Gather/Scatter Kernel: what developer should write

Idir$ concurrent

doi=1,n !Loop will Vectorize, Stream, and Unroll
a( indx(i) ) = a( indx(i) ) + b(i)

enddo

CRRANY

Cray Inc. Proprietary - Not for Public Disclosure 22



