
October 18, 2004 Fall Creek Falls Conference 1

Software Engineering
Lessons Learned

Douglass Post
Los Alamos National Laboratory

Fall Creek Falls Conference
Fall Creek Falls, Tennessee, Oct. 19-20, 2004

LA-UR-04-4151
Approved for public release;
Distribution is unlimited Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California

for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes
that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this
contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcherﾕs right to publish; as an institution, however, the
Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

October 18, 2004 Fall Creek Falls Conference 2

Computational Science faces
Three Challenges.

• Performance Challenge—large, but progressing
– Building high performance computers—big challenge
– Price of performance is complexity

• Programming Challenge—larger, but progressing
– Programming for high performance, complex

computers—bigger challenge
– Next generation of HPCs : 100,000’s of processors

• Prediction Challenge*—largest, but not as much
progress
– Develop complex, multi-effect simulations that have

sufficient reliability that they can for the basis of important
decisions—biggest challenge

*The Coming Crisis in Computational Science, Proceedings IEEE International Conference on High Performance
Computer Architectures, Madrid, Spain, February 15, 2004

October 18, 2004 Fall Creek Falls Conference 3

Computational predictions aren’t yet reliable.
• An ORNL example:
• Taleyarkhan and co-workers at ORNL used intense sound waves to

form sonoluminescent bubbles with deuterated acetone
• They observed Tritium formation and 14 MeV neutrons, indicating that

nuclear fusion was occurring
• “Observed” Temperature was ~ 107 oK instead of the usual 103 oK
• If true, we could have a fusion reactor in every house
• Computer simulations were done that matched the “experimental results”

if the driving pressure in the codes was increased by a factor of 10 (well
outside reasonable uncertainties)

• Based on the “agreement” of “theory” and “experiment”, the results were
published in Science and generated intense interest

• Experiments were repeated, especially at ORNL. No significant Tritium
or 14 MeV neutrons were found.

• “Sigh” — No fusion reactor in everyone’s house.
• Simulation was misleading
• Bad experiment + bad simulation = ?

—Taleyarkhan et al, Science 295(2002), p. 1868; Shapira, et al, PRL, 89(2002), p.104302.

October 18, 2004 Fall Creek Falls Conference 4

ASCI Successes and Failures
• In late 1996, the DOE launched the Accelerated Strategic Computing Initiative

(ASCI) to develop the“enhanced” predictive capability by 2004 at LANL, LLNL
and SNL that was required to certify the US nuclear stockpile without testing
– ~ $6 B expended so far (included codes, platforms, and supporting software

infrastructure)
– Six projects were launched in 1996 and 1997
– Milestones were set in late 1996 by senior management, milestones were set for 3,

4 and 5 years later
• Success required development and integration of several major physics

capabilities
– Takes 8 years to develop a 3-D nuclear explosion code.
– 2/3 of projects failed to meet the first milestones
– 1/3 have been successful, 1/3 are on the road to success, and 1/3 were eventually

canceled
– 1/2 of the code projects had 3 to 4 years to do 8 years of work, and none of them

could do it
• A 33 to 67% failure rate, we must do better!!!!!!!
• Based on our case studies and other evidence, DOE, LLNL and LANL

recognized this and have developed more realistic goals and schedules

1996 1997 1998 1999 2000 2001

ASCI
planning
and start

ASCI Milestones set

New Code Projects
Launched

1st

Milestone 2nd

Milestone

3rd

Milestone

1992 — 1995

Hawk Code Project

Kite Code Project

Jabiru Code Project

Egret Code Project

Gull Code Project

Finch Code Project

M
ilestone failures

M
ilestone successes

ASCI Code Project Schedule

Project start

October 18, 2004 Fall Creek Falls Conference 6

We studied these projects to
identify the “Lessons Learned*”

The Successful projects emphasized:
• Conservative approach

– Building on successful code development history and prototypes
– Better physics and computational mathematics over better “computer science”
– The use of modern but proven Computer Science techniques,

• Don’t make the code project a Computer Science research project!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
• Sound Software Project Management

– Highly competent and motivated people in a good team
– Development of the team
– Software Project Management: Run the code project like a project
– Determining the Schedule and resources from the requirements
– Identifying, managing and mitigating risks
– Focusing on the customer

• For code teams and for stakeholder support
– Software Quality Engineering: Best Practices rather than Processes

• Verification and Validation
– Need for improved V&V methods became very apparent

The unsuccessful projects didn’t emphasize these!
*Lessons Learned from ASCI, DE Post, RP Kendall, International Journal of High
Performance Computing Applications, to appear, Fall, 2004.

October 18, 2004 Fall Creek Falls Conference 7

Lessons Learned are
the way forward!!! 1

2

3

4
• Case studies conducted after each

crash.
• Lessons learned identified and adopted

by community
• Computational Science is at stage 3

Tacoma Narrows Bridge buckled
and fell 4 months after construction!

• 4 stages of design maturity for a
methodology to mature—Henry
Petroski—Design Paradigms

• Suspension bridges—case studies of failures
(and successes) were essential for reaching
reliability and credibility

October 18, 2004 Fall Creek Falls Conference 8

Kite Code Project had initial difficulties,
but is now headed for success

0

5

10

15

20

1996 2000 2004

Kite Project Staffing Levels

S
ta

ff
le

ve
l (

FT
E

s)

Year

Milestone

• Project launched in mid-1996 with innovative,
promising but feasible physics approach

• Requirements and goals set by sponsors without
much input from customers
– Milestones were set without adequate consideration of

consistency among requirements, schedule and resources.
– KITE project had to accomplish in 3 years what took the

other teams 8 years.
– Milestone problems bore little relation to needs of customers,

were viewed by customers as “stunts”, result was no
support from customers

 Kite project didn’t complete milestone on time Dec. 31, 1999
 Missing the milestone resulted in staffing cut

• After milestone failure, project was refocused on customer
needs, customers set requirements, customers began to
support project

October 18, 2004 Fall Creek Falls Conference 9

Important Lessons were identified.
• Project now back to healthy staff levels and is

succeeding by focusing on customer support
• Some Lessons learned:

– Experienced and knowledgeable people are essential for
setting requirements, schedule and resource allocations

– Realistic schedule is crucial, Kite team had 3 years to
accomplish a 8 project

– Failure to complete initial milestone led to punishing Kite
team for not completing 8 years of work in 3 years, team
and project almost destroyed

– Customer requirements are more important than sponsor
requirements

– Requirements management is crucial.
– Computer science support is important! Physicists are not

the best people for programming and computer science
issues (Programming Challenge)

Whistling Kite

October 18, 2004 Fall Creek Falls Conference 10

Egret Code Project was
conservative—schedule and
technology—and successful

• Originally started in 1992 as part of a graduate thesis building
on a prior code
– Serial version working with all but one of the major required

packages in 1994, parallelization began in 1997
• Written in C by a very experienced team of physicists and

computer scientists
– Management experienced with code development

• Early customer involvement (~1995), fairly continuous V&V
since 1996

• Began implementation of next major package in 1997
• Strong support by management, well-defined project structure
• Completed first major milestone Dec 28, 1999, three days

before Jan. 1, 2000 milestone due date

October 18, 2004 Fall Creek Falls Conference 11

Jabiru code project was
conservative and successful

• Jabiru code project began as a code port from a vendor
with all but one of necessary packages (serial) in 1992
– Installation of other packages begun in 1997
– Parallelization started in 1994

• Written in Fortran 90
– Heavy emphasis on portability, (~ 10 different platforms)
– Conservative, perhaps overly conservative computer science

• Continuous interaction and use by users, long V&V history
• Substantial use by non-ASCI projects (Labs, universities,

and other institutions)
• Senior management support polarized, some strongly in

favor—”it really works”, some strongly opposed (“not
invented here syndrome”)

• Strong example of a “hero” model success, highly
experienced and mature staff

October 18, 2004 Fall Creek Falls Conference 12

Hawk Code Project was very
ambitious.

• The Hawk Code Project Vision involved using object oriented
languages(C++) with a Python controller

• Project began in late 1996
• Very few experienced staff, all very bright but fairly new to the physics

and the programming challenge
– Leadership very young and inexperienced, but smart and dedicated
– Lots of computer science and programming support
– Senior management very inexperienced managing code development

• Ambitious physics scope, trying new algorithms that needed
considerable R&D

• Initially didn’t succeed in meeting milestones—initial milestone not
important for customers—customers weren’t interested

• Still not a really mature code after 7 years
• Performance a major issue (10 times slower than comparable F90

codes)

October 18, 2004 Fall Creek Falls Conference 13

Finch Code Project was a shotgun
marriage that ended in divorce

• Finch Code Project began in early 1997
• Initial project consisted of two major groups in other divisions with

existing codes that had lost their support plus an integration group
– These groups viewed ASCI as a way to get support for their existing work
– Success was measured by the success of each sub-project individual rather

than the success of the whole project
– The senior management in the other divisions was much more interested in

the continued flow of the money than in the success of the Finch project
– Little or no analysis was done to establish that the two packages were

compatible, i.e. that it was technically feasible to integrate the two packages
into a single code

– Finch Project manager had almost no authority over the staff in each sub-
project

• The Finch Project never really got off the ground.
– It didn’t meet any of its milestones
– But it had the best SQA of all of the codes!

• The Finch Project was canceled last year.

October 18, 2004 Fall Creek Falls Conference 14

Gull Code Project was
canceled after ~$100M
• The Gull Code Project was begun in 1992
• It was based on a F90 parallel code obtained from another laboratory
• The Gull project staff decided to use the project as a vehicle for

improving code development methodologies
– Automatic and general parallelization through a library
– Latest object oriented computer languages (C++)
– Automatic differencing and code generation from “equations”
– Performance issues: Substantially outperformed by legacy code that it was

based on (which only had about 1 FTE of support per year)
• Very large code team (~ 50 staff) spread across 3 divisions without

much authority given to project lead
– Project leaders were often inexperienced and there was substantial project

leadership and staff turnover
• Hostility toward customers (“We know what you need better than you

do!”)
• Failed to meet ultimate milestones (although a few intermediate ones

were met)
• Canceled last year after $100M (about expending about one-half of the

weapons code development resources at one of the labs)

October 18, 2004 Fall Creek Falls Conference 15

Verification and Validation
• Customers (e.g. DOD for ASCI) want to know why they should believe

code results
• Codes are only a model of reality
• Verification and Validation are essential
• Verification

– Verify equations are solved correctly
– Regression suites of test problems, convergence tests, manufactured

solutions, analytic test problems, code comparisons and benchmarks
• Validation

– Ensure models reflect nature, check code results with experimental data
– Specific validation experiments are required

• NNSA is funding a large experimental program to provide validation data—e.g.
National Ignition Facility, DAHRT, ATLAS, Z,…

• V&V experience with ASCI codes indicates that a stronger intellectual
basis is needed for V&V

• More intense efforts are needed in both types of V&V if computational
science is to be credible

NIF

Roach, 1998; Roache, 2002; Salari and Knupp, 2000; Lindl, 1998; Lewis, 1992; Laughliin, 2002)

Validated
Applications

Quantified
Predictability 5 %

50 %
95 %

Everything that is possible

October 18, 2004 Fall Creek Falls Conference 16

Conclusions
• If Computational Science is to fulfill its promise for society, it must

become as mature as theoretical and experimental methodologies.
• Prediction Challenge

• Need to analyze past experiences, successes and failures, develop “lessons
learned” and implement them—DARPA HPCS doing case studies of ~ 20
major US code projects (DoD, DOE, NASA, NOAA, academia, industry,…)

• Major lesson is that we need to improve:
•Verification
•Validation
•Software Project Management and Software Quality

• Programming Challenge
• HPC community needs to reduce the difficulty of developing codes for

modern platforms—DARPA HPCS developing new benchmarks,
performance measurement methodologies, encouraging new development
tools, etc.

