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Motivation

Graph Algorithms

memory intensive
use sparse data structures 
poor cache locality
tough to implement

hard to achieve parallel speedup

Current Parallel Systems

physically distributed memory
caches hide memory latency 
communication overhead
coarse-gained parallelism

no architectural support

Abstract
We present fast parallel implementations of several fundamental graph theory problems on 
multithreaded architectures (e.g. the Cray MTA-2). The architectural features of the MTA-2 such as 
flat shared memory, fine-grained multithreading, and low-overhead synchronization aid the design 
of simple, scalable and high-performance graph algorithms. We test our implementations on large 
scale-free and sparse random graph instances, and report interesting results. For instance, Breadth-
First Search on a scale-free graph of 500 million vertices and 2 billion edges takes 15 seconds on a 
40-processor MTA-2 system with an absolute speedup of close to 30. This is a significant result in 
parallel computing, as prior implementations of parallel graph algorithms report very limited or no 
absolute speedup for irregular and sparse graphs

Cray MTA-2
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Sources: Eldorado [Feo 2005], Cray MTA-2 User manual, Karo Designs (http://www.karo.com)

flat shared memory
no data cache
hardware multi-threading to   
tolerate memory latency
fine-grained synchronization 
40 processors, 160 GB RAM
220 MHz clock
128 streams per processor
25 active threads to saturate     

next-generation massively 
multithreaded supercomputer
basic processing units – MTA-2
uses the Cray XT3 interconnect
8192 processors, 128TB memory

Eldorado

Graph Infrastructure Performance

/* While the Queue is not empty */
#pragma mta assert parallel
#pragma mta loop future
for (i=startIndex;i<endIndex;i++) {

u = Q[i];
/* Inspect all vertices adjacent to u */
#pragma mta assert parallel
for (j=0; j < degree[u]; j++) {

v = neighbor[u][j];
/* Check if v has been visited yet? */
dist = readfe(&d[v]);
if (dist == -1)

writeef(&d[v], d[u] + 1);
else

writeef(&d[v], dist);
/* Enqueue v */
Q[int_fetch_add(&count, 1)] = v;

}
}

Input: G(V,E), source vertex s
Output: Array d [1..n] with d [v] holding the length 

of the shortest path from s to v \in V, 
assuming unit-weight edges

1    for (all v in V) in parallel do
2        d[v] ← -1;
3    d[s] ← 0;
4    Q ← φ;
5    Enqueue s ← Q;
6    while (Q ≠ φ) do
7        for (all u in Q) in parallel do
8            Delete u ← Q;
9            for (each v adjacent to u) in parallel do
10              if (d[v] = -1) then
11                  d[v] ← d[u] + 1;
12                  Enqueue v ← Q;
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Prof. David A. Bader (Georgia Tech)
Jonathan Berry (Sandia National Labs)

Degree distributions of Test graphs
(16M vertices, 150M edges)
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stConnectivity Algorithms Comparison
(CSF graphs, 134M vertices, 805M edges)
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Cray MTA-2 – 40 processors: BFS on a graph of 528M vertices, 2.1B edges 

Scale-free – 17.32 sec., Random – 13.74 sec.

IBM BlueGene/L – 32K processors: BFS* on a random Poisson graph 

3.2B vertices, average degree of 10 – 4.9 sec.

128-node 2GHz dual Opteron cluster - Parallel BGL**

BFS: Random graph, 1M vertices and 15M edges

1 node: 40 sec., 20 nodes: 10 sec., 70 nodes: 3 sec., 100 nodes : 10 sec.

* [Chow ’05]                  ** Lumsdaine, Parallel BGL Performance, http://www.osl.iu.edu/research/pbgl/performance/

Related Work

Breadth-First Search
st-connectivity
Depth-First Search
Connected Components
Minimum Spanning Tree [Sollin]
Shortest Path Algorithms 

Dijkstra SSSP variants using treaps
and double-buckets
Parallel SSSP [Meyer ’03] 
Thorup’s SSSP alg., undirected graphs

Algorithms

Level-synchronized Parallel BFS
MTA-2 Programming is simple!

(code corresponding to steps 7-12)

treaps
van Emde Boas trees
dynamic arrays
hash tables
priority queues

pairing heaps
fibonacci heaps

Data Structures

D. A. Bader and K. Madduri, Designing Multithreaded Algorithms for Breadth-First Search and 
st- connectivity on the Cray MTA-2 (submitted)
D.A. Bader, G. Cong, and J. Feo, On the Architectural Requirements for Efficient Execution of 
Graph Algorithms, ICPP 2005

based on generic programming ideas of the 

BOOST graph library

extensible and modular

several design levels and abstractions

simple and efficient code

C++, compiles on the Cray MTA-2, Linux

Treap Set Operations
(Two sets -- 32M values)
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support for nested parallelism
high-degree vertices
hot spots
race conditions

Visitor level abstraction – users design   
simple components that can be plugged  
into the infrastructure
Algorithm level – DFS, BFS, MST etc.
Lower level abstractions – core data   
structures
Visitation vs. Iteration
Closures

Algorithm Design Hurdles
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BFS - Random Graphs - 134M vertices, 940M edges
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BFS - CSF Graphs - 134M vertices, 940M edges
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