Design and Implementation of Parallel Graph Algorithms on the Cray MTA-2

Joint work with
Prof. David A. Bader (Georgia Tech)
Jonathan Berry (Sandia National Labs)

Kamesh Madduri

kamesh@cc.gatech.edu

PhD student, College of Computing, Georgia Institute of Technology

Georgia ‘|‘|‘ Celleg® af

Tech | Campurifing

c.....r..n.r_..l Science and Engineering

Abstract
We present fast parallel h theory problems on

grap
multthreaded architectures (e.g. the Cray MTA 2) The archneclural features of the MTA-2 such as
flat shared memor ization aid the design
of simple, scalable und high- perfomnce ‘eraph Wetos on large
scale-frec and sparse random graph instances, and report interesting results. For instance, Breadth-
First Search on a scale-free graph of 500 million vertices and 2 billion edges takes 13 scconds on a
40-processor MTA-2 system with an absolute speedup of close to 30. This is a significant result in
parallel computing, s prio implementaions of paralel graph algorthms report very limited or o
absolute speedup for irregular and sparse graphs

Internet Multicast Backbone

Social Networks

Power Distribution Networks

Ground Transportation Yeast Protein network

Graph Algorithms Current Parallel Systems

= memory intensive = physically distributed memory

= use sparse data structures = caches hide memory latency
= poor cache locality = communication overhead
= tough to implement = coarse-gained parallelism

» hard to achieve parallel speedup > no architectural support

Crav MEAD

= flat shared memory

= no data cache

= hardware multi-threading to
tolerate memory latency

= fine-grained synchronization

= 40 processors, 160 GB RAM

= 220 MHz clock

= 128 streams per processor

= 25 active threads to saturate

Eldorado

= next-generation massively
multithreaded supercomputer

= basic processing units - MTA-2

= uses the Cray XT3 interconnect

= 8192 processors, 128TB memory

Graph Infrastucture

= based on generic programming ideas of the = Visitor level abstraction — users design

BOOST graph library simple components that can be plugged
into the infrastructure
DFS, BFS, MST etc.

= Lower level abstractions — core data

= extensible and modular
= several design levels and abstractions = Algorithm level —
= simple and efficient code

. . structures
= (C++, compiles on the Cray MTA-2, Linux

Alborithins

= Breadth-First Search

= Visitation vs. Iteration

* Closures

Algorithm Design Hurdles

= st-connectivity
= Depth-First Search
= Connected Components

= support for nested parallelism
= high-degree vertices

= hot spots

= race conditions

L,

= Minimum Spanning Tree [Sollin]
= Shortest Path Algorithms
= Dijkstra SSSP variants using treaps
and double-buckets
= Parallel SSSP [Meyer "03]
= Thorup’s SSSP alg., undirected graphs

MTA-2 Programming is simple!

Level-synchronized Parallel BFS (code corresponding to steps 7-12)

Input: G(V,E), source Vel.’tex S . * While the Queue is not empty *
Output: Array d [1..n] with d [v] holding the length #pragma mta assert parallel

of the shortest path from s to v \in V, #pragma mta loop future

assuming unit-weight edges for (i=startIndex;i<endIndex;i++) {

1 for (all vinV)in parallel do u=Qlil;
2 div] -1 * Inspect all vertices adjacent to u *
3 d[s]<0; #pragma mta assert parallel
4 Qe—g; for (j=0; j < degree[u]; j++) {
5 Enqueue s—Q; v = neighbor[u][j;
6 while (Q # ‘P) do . * Check if v has been visited yet? *
7 for (all uin Q) in parallel do dist = readfe(&d[v]);
8 Delete u < Q; if (dist ==-1)
9 for (each v adjacent to u) in parallel do writeef(&d[v], d[u] + 1);
10 if (d[v]=-1) then else
1 d[v] < d[u] +1; writeef(&d[v], dist);
12 Enqueue v « Q; * Enqueue v *
Q[int_fetch_add(&count, 1)] = v;
}
}
Treap Set Operations
Data Structiies (Two sets - 32\ values)
1601 nesecton
Dierence
= treaps w0 - Creaion
= van Emde Boas trees 7
= dynamic arrays o™
= hash tables £ ®
f w
= priority queues g
)
= pairing heaps w0
= fibonacci heaps o
o M » 2 P 50

No. of Processors

Execution Time (seconds)

Performance

Degree distributions of Test graphs
(16M vertices, 150M edges)

10000000 * Random
- cse
- ssean
1000000
100000 -
5 1o
S ww
g
&
100
0 i
. - - .
o
o T D 10 00 1000 100000 1000000

Out Degree
BFS - Random Graphs - 134M vertices, 940M edges BFS - CSF Graphs - 134M vertices, 940M edges

B\ —w— Time
= —¥= Specdup

. Pl

Speedup
Execution Time (seconds)

s 1 15 220 25 % 3% 4 4 5 15 20 2% 30
No. of Processors No. of Processors

stConnectivity Algorithms Comparison

BFS Random - 2.1476 ed;
andom edges (CSF graphs, 134M vertices, 805M edges)

Execution Time (seconds)

Execution Time (seconds)

o 2 a 6 8 i) 12

No. of Processors No. of Processors

= Cray MTA-2 — 40 processors: BFS on a graph of 528M vertices, 2.1B edges
Scale-free — 17.32 sec., Random — 13.74 sec.

= IBM BlueGene/L — 32K processors: BFS* on a random Poisson graph
3.2B vertices, average degree of 10 — 4.9 sec.

= 128-node 2GHz dual Opteron cluster - Parallel BGL**
BFS: Random graph, 1M vertices and 15M edges
1 node: 40 sec., 20 nodes: 10 sec., 70 nodes: 3 sec., 100 nodes : 10 sec.

* [Chow '05] ** Lumsdaine, Parallel BGL Performance, http://www.osl.iu.edu/research/pbel/performance/

Related Work

= D. A. Bader and K. Madduri, Designing Multithreaded Algorithms for Breadth-First Search and
st- connectivity on the Cray MTA-2 (submitted)

= D.A. Bader, G. Cong, and J. Feo, On the Architectural Requirements for Efficient Execution of
Graph Algorithms, ICPP 2005

Speedup

/

