
SGI Proprietary

Star-P Overview

MATLAB® Star-P

client manager

server manager

processor #0

processor #M

processor #1

. .

matrix manager

package manager

ScaLAPACK
FFTW
RASC, viz

<site (e.g. UPC)>
GAM-optim FPGA #0

FPGA #1

FPGA #N

.

SGI Proprietary

• Vision: Simple method of coupling desktop productivity
applications with HPC systems

• Current:
– Extensions to MATLAB language to allow distributed arrays and

operations to take place on an HPC system
– Allows easy access to multiple processors and large memories
– Enables acceleration with vendor-specific mechanisms
– Seamless connection to remote HPC via ssh
– Very few changes to serial MATLAB code

Star-P Description

SGI Proprietary

Design Flow

• Current Design Flow
– Algorithm development in MATLAB
– Deployment in C/MPI (after recoding)
– Infrequent use of FPGAs (after recoding)

• Proposed Design Flow
– Algorithm development in MATLAB
– Parallelization with Star-P
– Acceleration with RASC (FPGAs in NUMAlink(tm) fabric)
– Star-P and external package API allow the author to work with MATLAB

code throughout the process

SGI Proprietary

• Star-P provides an SDK for the invocation of external
library calls

• The calls are made by the MPI worker processes
simultaneously

• A new package only requires synchronizing between the
workers and reformating data between Star-P and the
external library

• For the edge detection application the rasc_sobel package
splits the image up between the present FPGAs and
translates between the numerical formats

External Package Interface

SGI Proprietary

MATLAB Code

function r = detect(imgs, fid, frames, height, width)
for i = 1:frames
 img = reshape(imgs(i,:), height, width);
 res = sobel(img, height, width);
 fwrite(fid, res(2:height+1, 2:width+1), ‘double’);
end;
r = 0;

function r = sobel(data, height, width)
K0 = fft2([[-1 -2 -1; 0 0 0; 1 2 1] zeros(3, width -1); zeros(height – 1, width + 2)]);
K1 = fft2([[-1 0 1; -2 0 2; -1 0 1] zeros(3, width –1); zeros(height – 1, width + 2)]);
img = fft2([data zeros(height, 2); zeros(2, width + 2)]);
g = ones(height + 2, width + 2).*127;
tmp0 = ifft2(img.*K0);
tmp1 = ifft2(img.*K1);
r = real(gt(sqrt(tmp0.^2 + tmp1.^2), g).*255);

• Simple Fourier domain convolution for edge detection
• Raw image data must be reshaped into a Matrix
• Results outputed for actual use

SGI Proprietary

Star-P Code

height = 1024 * p;
width = 1280 * p;

function r = pdetect(imgs, fid, frames, height, width)
for i = 1:frames
 img = reshape(imgs(i,), height, width);
 res = sobel(img, height, width);
 fwrite(fid, pp2matlab(res(2:height+1, 2:width+1)), ‘double’);
end;
r = 0;

• For better performance perform the calculations on a
multiprocessor SGI Altix

• Define the image dimensions as being “distributed”
• All derivative data structures will be placed on the Altix
• Further optimizations are possible to fine tune row / column

distribution and to minimize I/O

SGI Proprietary

• Integrate with RASC FPGA cores for greater performance
• Requires a simple piece of wrapper code
• M worker processes on the Altix talk to N RASC FPGAs
• The end result is MATLAB computing with parallel FPGAs

with only a single change to the original MATLAB code

Star-P / RASC Code

pploadlibrary(’/usr/lib/librasc.so’);
pploadpackage(’./rasc_sobel.so’);

function r = rdetect(imgs, fid, frames, height, width)
for i = 1:frames
 img = reshape(imgs(i,:), height, width);
 res = ppclient ('rasc_sobel', img, height, width);
 fwrite(fid, pp2matlab(res(2:height+1, 2:width+1)), ‘double’);
end;
r = 0;

SGI Proprietary

Comparative Time

• 24 frames of 720x405 resolution video
• All Star-P runs done with version 0.6

MATLAB 4p Star-P 8p Star-P +1 RASC +2 RASCs

0 sec
10 sec
20 sec
30 sec
40 sec
50 sec
60 sec
70 sec
80 sec
90 sec

100 sec

