
0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000
5000000

-1

-0
.9

-0
.7

-0
.6

-0
.5

-0
.4

-0
.2

-0
.1 0.
0

0.
1

0.
3

0.
4

0.
5

0.
6

0.
8

0.
9

Correlation Value

Fr
eq

ue
nc

y

Demands and Solutions for Genome-Scale Combinatorial Analysis
Mike Langston1, Elissa Chesler2, John Eblen1, Loren Hauser2, Bob Hettich2, Phil LoCascio2, Andy Perkins1, Arnold Saxton1,

Dave Tabb3, Dorothea Thompson4, Nathan VerBerkmoes2, Brynn Voy2, Roumyana Yordanova1, Bing Zhang3, Yun Zhang1

1University of Tennessee, Knoxville, TN 37996-3450 2Oak Ridge National Laboratory, Oak Ridge, TN 37831-6445
3Vanderbilt University, Nashville, TN 37232-8340 4Purdue University, West Lafayette, IN 47907-2108

Background
For simplicity, we focus only on microarray
technology. In a single slice, microarrays can identify
genes that are up- or down-regulated in a condition of
interest. It is this analysis of differential expression
that today drives the majority of array experiments.
Yet it is the next level of analysis – the potential to
extract meaningful relationships between multiple
genes – that sets the power of arrays apart from
traditional measures of gene expression. “Guilt by
association,” the assumption that genes with similar
expression patterns participate in common cellular
functions, drives the emerging attempt to extract
pathways from microarray data. We employ a graph
theoretical approach to identify sets of co-regulated
genes. Many innovative graph algorithms are based
on decades of basic research, and constitute a class of
tools that can help elucidate relationships hidden in
matrices of correlations across thousands of genes.
From such a matrix we create an unweighted graph.
The challenge is not to study the graph in its entirety,
but rather to extract its embedded subgraphs, or small,
tightly connected regions of the graph that represent
subsets of genes with strong correlations between
every pair of its members and are thus likely to
represent biologically significant interactions. In the
most extreme case, in which a subgraph contains all
possible edges between its vertices, this structure is
called a clique. The importance of clique lies in the fact
that each and every pair of vertices is joined by an
edge, from which we can infer some form of co-
regulation among the corresponding genes.

The clique compute engine, highlighting the use of
parametric tuning, fixed-parameter tractability, massive

parallelism and hardware acceleration.

Supercomputing resources are required. Our codes
were executed on an SGI Altix at ORNL, with 256 dual-

CPU processors, each clocked at 1.5 GHz, with two
terabytes of shared memory.

Typical graph sizes produced by data from microarray
and related high throughput biological experiments.

Demands for Petascale Computing
As more complex and integrated forms of data come on
line, we encounter severe computational bottlenecks as
we ramp up to genome-size problems. Integrating
varying types of data, including that from gene
expression, proteomics and SNPs, is a key priority. The
scale of correlation across these diverse data types
tends to lower correlation values and thus increase
edge densities. In addition, data from exon and tiling
arrays can produce graphs with millions of vertices and
trillions of edges. Enumerating, interpreting and
prioritizing maximal cliques incurs extreme memory
overhead: a graph of order n may have as many as 3n/3
maximal cliques. A typical, modest-sized problem
required 607 GB of core memory to hold newly
generated cliques, and 404 GB to hold other needed
cliques, when it was terminated after 12 hours on 256
CPUs of the ORNL SGI Altix, “Ram.”

Correlation Structures
To build a graph from a correlation matrix, a threshold
is selected above which an edge is retained and below
which the edge is removed. We use a variety of
thresholding schemes, including the use of functional
similarity, statistical relevance and graph structure
theory.

High Performance Implementations
Computing the maximum clique size is a first and
foundational computational step. In it we employ a
recursive branching algorithm that is not trivially
parallelized. A sophisticated dynamic load balancing
strategy is necessary, because dividing up the
search space in advance generally produces a very
unbalanced search tree on real data (often only a few
nodes end up with most of the work). A useful
strategy is to monitor the system as the computation
proceeds, redistributing workloads as needed to
keep all processors busy. Each processor stores
several possible jobs that can be delegated to other
processors as necessary. Frequent communication
is imperative. All of this must be accomplished with
as little overhead as possible, so that the cost of
parallelization does not exceed its benefits.

Sample gene-gene correlation coefficient distribution with
possible thresholds marked.

Fixed Parameter Tractability
Novel approaches are thus required if clique is to be
applied to microarray data sets. In this context we
employ fixed parameter tractability (FPT): A problem is
FPT if it has an algorithm that runs in O(f(k)nc) time,
where n is the problem size, k is the input parameter,
and c is a constant independent of both n and k. Clique
itself is not FPT (unless the W hierarchy collapses). We
therefore focus instead on clique’s complementary
dual, the vertex cover problem. Consider G’, the
complement of G. (G’ has the same vertex set as G, but
edges present in G are absent in G’ and vice versa.)
The question now asked is whether G’ contains a set C
of k vertices that covers every edge in G’, where an
edge is said to be covered if either or both of its
endpoints are in C. Like clique, vertex cover is NP-
complete. Unlike clique, however, vertex cover is FPT.
The crucial observation here is this: a vertex cover of
size k in G’ turns out to be exactly the complement of a
clique of size n − k in G. Thus, we search for a
minimum vertex cover in G’, thereby finding the desired
maximum clique in G. Key algorithmic factors in the
success of an FPT-based approach are kernelization, in
which a problem is reduced to its compute kernel, and
branching, in which a search tree is employed to
explore the solution space efficiently. Under some
conditions these operations can be iterated, a process
termed interleaving.

A overview of clique-based clustering algorithms for
microarray analysis. Our approach is shown in blue.

Remarks
Identifying co-expressed genes, interacting proteins,
putative regulatory networks and other important
biological features are formidable tasks. The data
sets required are enormous and often hard to
integrate. The combinatorial problems to be solved
are intractable with traditional methods. Novel
algorithmic tools, including FPT and others, are
helpful for central problems such as clique, which
represents the most trusted potential for finding sets
of inter-correlated genes and gene products.
Nevertheless, computational demands rapidly
exhaust current computing capabilities and require
petascale resources.

Computational Complexity
The inputs to the standard decision version of clique
are an undirected graph G with n vertices, and a
parameter k ≤ n. The question asked is whether G
contains a clique of size k, that is, a subgraph
isomorphic to Kk. Subgraph isomorphism, clique in
particular, is NP-complete. From this it follows that
there is no known algorithm for deciding clique that
runs in time polynomial in the size of the input.

0
500

1000
1500
2000
2500
3000
3500
4000
4500

1 2 4 8 16 32

Number of Processors

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

Branching times for a co-regulation graph of order 3101
with 35% edge density.

Illustrative Timings
We ran our codes on Mus Musculus spleen gene
expression data obtained with Affymetrix M430A
arrays. After thresholding by removing correlations
not significant at the p=0.01 level, a graph with 22750
vertices and 11417976 edges was obtained.
Kernelization further reduced the problem to a graph
of just 3103 vertices and 1673174 edges. Runs were
conducted using 1, 2, 4, 8, 16, and 32 processors on
the SGI Altix at ORNL. The maximum clique size was
found to be 291. This is of course not a genome-size
problem, and is used only to demonstrate the
scalability of our methods.

Human Tiling
Array

U95Av2
U133 Set

U133 Plus 2.0

Human Exon
Array

1

100

10000

100000
0

1E+08

1E+10

1E+12

1E+14

N
um

be
r o

f E
dg

es

