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Background
For simplicity, we focus only on microarray 
technology.  In a single slice, microarrays can identify 
genes that are up- or down-regulated in a condition of 
interest.  It is this analysis of differential expression 
that today drives the majority of array experiments.  
Yet it is the next level of analysis – the potential to 
extract meaningful relationships between multiple 
genes – that sets the power of arrays apart from 
traditional measures of gene expression.  “Guilt by 
association,” the assumption that genes with similar 
expression patterns participate in common cellular 
functions, drives the emerging attempt to extract 
pathways from microarray data.  We employ a graph 
theoretical approach to identify sets of co-regulated 
genes.  Many innovative graph algorithms are based 
on decades of basic research, and constitute a class of 
tools that can help elucidate relationships hidden in 
matrices of correlations across thousands of genes.  
From such a matrix we create an unweighted graph. 
The challenge is not to study the graph in its entirety, 
but rather to extract its embedded subgraphs, or small, 
tightly connected regions of the graph that represent 
subsets of genes with strong correlations between 
every pair of its members and are thus likely to 
represent biologically significant interactions.  In the 
most extreme case, in which a subgraph contains all 
possible edges between its vertices, this structure is 
called a clique. The importance of clique lies in the fact 
that each and every pair of vertices is joined by an 
edge, from which we can infer some form of co-
regulation among the corresponding genes. 

The clique compute engine, highlighting the use of 
parametric tuning, fixed-parameter tractability, massive 

parallelism and hardware acceleration.

Supercomputing resources are required.  Our codes 
were executed on an SGI Altix at ORNL, with 256 dual-

CPU processors, each clocked at 1.5 GHz, with two 
terabytes of shared memory.

Typical graph sizes produced by data from microarray 
and related high throughput biological experiments.

Demands for Petascale Computing
As more complex and integrated forms of data come on 
line, we encounter severe computational bottlenecks as 
we ramp up to genome-size problems. Integrating 
varying types of data, including that from gene 
expression, proteomics and SNPs, is a key priority.  The 
scale of correlation across these diverse data types 
tends to lower correlation values and thus increase 
edge densities.   In addition, data from exon and tiling 
arrays can produce graphs with millions of vertices and 
trillions of edges.   Enumerating, interpreting and 
prioritizing maximal cliques incurs extreme memory 
overhead: a graph of order n may have as many as 3n/3
maximal cliques. A typical, modest-sized problem 
required 607 GB of core memory to hold newly 
generated cliques, and 404 GB to hold other needed 
cliques, when it was terminated after 12 hours on 256 
CPUs of the ORNL SGI Altix, “Ram.”

Correlation Structures
To build a graph from a correlation matrix, a threshold 
is selected above which an edge is retained and below 
which the edge is removed. We use a variety of 
thresholding schemes, including the use of functional 
similarity, statistical relevance and graph structure 
theory.

High Performance Implementations
Computing the maximum clique size is a first and 
foundational computational step.  In it we employ a 
recursive branching algorithm that is not trivially 
parallelized.  A sophisticated dynamic load balancing 
strategy is necessary, because dividing up the 
search space in advance generally produces a very  
unbalanced search tree on real data (often only a few 
nodes end up with most of the work).  A useful 
strategy is to monitor the system as the computation 
proceeds, redistributing workloads as needed to 
keep all processors busy.  Each processor stores 
several possible jobs that can be delegated to other 
processors as necessary.  Frequent communication 
is imperative.  All of this must be accomplished with 
as little overhead as possible, so that the cost of 
parallelization does not exceed its benefits.

Sample gene-gene correlation coefficient distribution with 
possible thresholds marked.

Fixed Parameter Tractability
Novel  approaches are thus required if clique is to be 
applied to microarray data sets. In this context we 
employ fixed parameter tractability (FPT): A problem is 
FPT if it has an algorithm that runs in O(f(k)nc) time, 
where n is the problem size, k is the input parameter, 
and c is a constant independent of both n and k. Clique 
itself is not FPT (unless the W hierarchy collapses). We 
therefore focus instead on clique’s complementary 
dual, the vertex cover problem.  Consider G’, the 
complement of G.  (G’ has the same vertex set as G, but 
edges present in G are absent in G’ and vice versa.)  
The question now asked is whether G’ contains a set C 
of k vertices that covers every edge in G’, where an 
edge is said to be covered if either or both of its 
endpoints are in C.  Like clique, vertex cover is NP-
complete.  Unlike clique, however, vertex cover is FPT.  
The crucial observation here is this: a vertex cover of 
size k in G’ turns out to be exactly the complement of a 
clique of size n − k in G.  Thus, we search for a 
minimum vertex cover in G’, thereby finding the desired 
maximum clique in G.  Key algorithmic factors in the 
success of an FPT-based approach are kernelization, in 
which a problem is reduced to its compute kernel, and 
branching, in which a search tree is employed to 
explore the solution space efficiently. Under some 
conditions these operations can be iterated, a process 
termed interleaving.

A overview of clique-based clustering algorithms for 
microarray analysis.  Our approach is shown in blue.

Remarks
Identifying co-expressed genes, interacting proteins, 
putative regulatory networks and other important 
biological features are formidable tasks.  The data 
sets required are enormous and often hard to 
integrate. The combinatorial problems to be solved 
are intractable with traditional methods.  Novel 
algorithmic tools, including FPT and others, are 
helpful for central problems such as clique, which 
represents the most trusted potential for finding sets 
of inter-correlated genes and gene products.
Nevertheless, computational demands rapidly 
exhaust current computing capabilities and require 
petascale resources.

Computational Complexity
The inputs to the standard decision version of clique 
are an undirected graph G with n vertices, and a 
parameter k ≤ n.  The question asked is whether G 
contains a clique of size k, that is, a subgraph 
isomorphic to Kk.  Subgraph isomorphism, clique in 
particular, is NP-complete.  From this it follows that 
there is no known algorithm for deciding clique that 
runs in time polynomial in the size of the input. 
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Branching times for a co-regulation graph of order 3101 
with 35% edge density. 

Illustrative Timings
We ran our codes on Mus Musculus spleen  gene 
expression data obtained with Affymetrix M430A 
arrays.  After thresholding by removing correlations 
not significant at the p=0.01 level, a graph with 22750 
vertices and 11417976 edges  was obtained.  
Kernelization further reduced the problem to a graph 
of just 3103 vertices and 1673174 edges.  Runs were 
conducted using 1, 2, 4, 8, 16, and 32 processors on 
the SGI Altix at ORNL.  The maximum clique size was 
found to be 291.  This is of course not a genome-size 
problem, and is used only to demonstrate the 
scalability of our methods.

Human Tiling 
Array

U95Av2
U133 Set

U133 Plus 2.0

Human Exon 
Array

1

100

10000

100000
0

1E+08

1E+10

1E+12

1E+14

N
um

be
r o

f E
dg

es


