
Techniques for Petascale 
Programming Models

Pacific Northwest National Laboratory (PNNL)

Daniel Chavarría-Miranda, Jarek Nieplocha,
Vinod Tipparaju, Manoj Krishnan, Bruce Palmer



Distributed Memory Programming Models

Distributed Data:
Data is explicitly associated with each processor, 

accessing data requires specifying the location 
of the data on the processor and the processor 
itself. 
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Data locality is 
explicit but data 
access is complicated. 



Shared Memory Programming Models

Shared Memory:
Data is an a globally accessible address space, 

any processor can access data by specifying 
its location using a global index

Data is mapped out in 
a natural manner 
(usually 
corresponding to the 
original problem) and 
access is easy. 
Information on data 
locality is obscured 
and can lead to loss 
of performance.
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Global Arrays

single, shared data structure/ 
global indexing

e.g., access A(4,3) rather than 
buf(7) on task 2

Physically distributed data

Distributed dense arrays that can be accessed through a 
shared memory-like interface

Global Address Space



Global Arrays (cont.)

Global Arrays (GA) implements a DSO (Distributed Shared 
Object) programming model

– Implemented as a runtime library

– Specialized for dense arrays

– Efficient implementation on top of RDMA hardware on clusters

Uses one-sided communication (put/get)

– Locality awareness is part of the programming model

Programs can efficiently determine which processor(s) owns a given array 
section, before issuing any remote operations

Compatible & interoperable with MPI
– A program can use GA operations as well as message passing

Scalable to thousands of processors



GA Programming Model

GA’s programming model abstractions naturally lead to data-
parallel programming

– Each processor executes equivalent computation on different array 
sections

GA currently uses the same process model as MPI 
(compatibility)

– Heavy-weight UNIX processes are launched on processors on cluster 
nodes

Processes on the same physical node share memory through OS 
mechanisms

– It’s simpler to run the same executable on the processors

Naturally leads to Single Program Multiple Data (SPMD) programming



GA Programming Model (cont.)

Differences between data parallelism and SPMD
– Data parallelism implies that parallel execution is derived from 

distributing equivalent computation over different data sections

Coarse-grained SIMD (??)

– SPMD implies that data is distributed onto multiple processors, each 
processor can take its own execution path through the code

A single executable image is used for all processors



GA Programming Model (cont.)

Array-based data parallelism is a powerful mechanism for 
structuring parallel programs

– However, there are limitations to scaling data parallel operations

– In many domains there are limitations on how large can arrays be

Higher resolution meshes might not make physical/mathematical sense

The are mathematical constraints on how large can matrices be

GA has introduced a mechanism to create processor groups
– Processor group are subsets of the number of processors on which the 

program is executing

– Enhances non-data parallel capabilities while still maintaining SPMD 
advantages

– Global array objects can now be universal or local to a processor 
group



Processor Groups

world group

group A group B

group C

GA provides the notion of a default active processor group
– All non-group specific GA operations will apply only to the processors 

in the active group

– Simplifies application development with groups



Processor Groups (cont.)

Partitioning the set of processors into groups enables the use 
of data-parallel methods inside the group

– Collective operations and synchronization can also be group-local

– Loosely-synchronous coordination can be used across groups

MD Application on Groups
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Processor Groups (cont.)

Processor groups enable a hybrid task/data parallel 
programming style

– There is coarse-grained task parallelism between finer-grained data-
parallel processor groups

Multiple advantages:
– Scalability for the loosely-coordinated coarse tasks can be better

– The tightly-coupled data-parallel tasks can be mapped to physical 
nodes in a cluster in a way that enhances locality

By restricting communication to smaller neighborhoods of nodes in the 
physical machine

“Group-local” collective operations don’t have to span large sections of a
petascale machine

Disadvantages:
– Conceptual parallelism model is more complex for the programmer



Rethinking HPC Process Models

The traditional MPI/GA-style heavyweight process model is no 
longer well-matched to hardware characteristics

– Advent of multicore processors changes the node architecture of a 
supercomputer

– Nodes are starting to have multiple sockets with multiple cores each

It should be better to spawn a single heavyweight process per 
separate address space (node)

– Spawn threads on computational cores

– Enables simpler resource sharing between computational tasks

– Data sharing between threads should be under the control of the 
programming model to minimize nasty bugs

Data races

Memory overwrites (single protection domain)



HPC Process Models (cont.)

A threaded model for HPC applications enables more 
dynamic forms of parallelism at the node level

– Dynamic tasks could be activated on demand

Due to local (node) requests

Due to remote (off-node) requests

– Granularity of the tasks and efficient task creation/destruction should 
be critical design & implementation issues

The number of tasks (threads) could be matched to the 
physical capabilities of the machine

– Number of available cores on a node

– More importantly, the needed memory and network bandwidth per task

– Throttle the number of active tasks to maximize the use of bandwidth 
in spite of having inactive cores



Global Arrays & Threads

GA currently utilizes threads for auxiliary operations
– There is a single helper thread per node to handle certain data-parallel 

operations

– The helper thread handles data-parallel operations over local array 
sections

For example, multiplying elements of an array section by a scalar

We would like to extend GA’s use of threads and expose a 
more general interface to them at the programming model 
level

– Challenges in maintaining compatibility with existing operations

– How do we create an API that is simple and productive for the 
scientific programmer?

While maintaining high performance and scalability
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