
Techniques for Petascale 
Programming Models

Pacific Northwest National Laboratory (PNNL)

Daniel Chavarría-Miranda, Jarek Nieplocha,
Vinod Tipparaju, Manoj Krishnan, Bruce Palmer



Distributed Memory Programming Models

Distributed Data:
Data is explicitly associated with each processor, 

accessing data requires specifying the location 
of the data on the processor and the processor 
itself. 

(0xf5670,P0)

(0xf32674,P5)

P0 P1 P2

Data locality is 
explicit but data 
access is complicated. 



Shared Memory Programming Models

Shared Memory:
Data is an a globally accessible address space, 

any processor can access data by specifying 
its location using a global index

Data is mapped out in 
a natural manner 
(usually 
corresponding to the 
original problem) and 
access is easy. 
Information on data 
locality is obscured 
and can lead to loss 
of performance.

(1,1)

(150,200)

(47,95)

(106,171)



Global Arrays

single, shared data structure/ 
global indexing

e.g., access A(4,3) rather than 
buf(7) on task 2

Physically distributed data

Distributed dense arrays that can be accessed through a 
shared memory-like interface

Global Address Space



Global Arrays (cont.)

Global Arrays (GA) implements a DSO (Distributed Shared 
Object) programming model

– Implemented as a runtime library

– Specialized for dense arrays

– Efficient implementation on top of RDMA hardware on clusters

Uses one-sided communication (put/get)

– Locality awareness is part of the programming model

Programs can efficiently determine which processor(s) owns a given array 
section, before issuing any remote operations

Compatible & interoperable with MPI
– A program can use GA operations as well as message passing

Scalable to thousands of processors



GA Programming Model

GA’s programming model abstractions naturally lead to data-
parallel programming

– Each processor executes equivalent computation on different array 
sections

GA currently uses the same process model as MPI 
(compatibility)

– Heavy-weight UNIX processes are launched on processors on cluster 
nodes

Processes on the same physical node share memory through OS 
mechanisms

– It’s simpler to run the same executable on the processors

Naturally leads to Single Program Multiple Data (SPMD) programming



GA Programming Model (cont.)

Differences between data parallelism and SPMD
– Data parallelism implies that parallel execution is derived from 

distributing equivalent computation over different data sections

Coarse-grained SIMD (??)

– SPMD implies that data is distributed onto multiple processors, each 
processor can take its own execution path through the code

A single executable image is used for all processors



GA Programming Model (cont.)

Array-based data parallelism is a powerful mechanism for 
structuring parallel programs

– However, there are limitations to scaling data parallel operations

– In many domains there are limitations on how large can arrays be

Higher resolution meshes might not make physical/mathematical sense

The are mathematical constraints on how large can matrices be

GA has introduced a mechanism to create processor groups
– Processor group are subsets of the number of processors on which the 

program is executing

– Enhances non-data parallel capabilities while still maintaining SPMD 
advantages

– Global array objects can now be universal or local to a processor 
group



Processor Groups

world group

group A group B

group C

GA provides the notion of a default active processor group
– All non-group specific GA operations will apply only to the processors 

in the active group

– Simplifies application development with groups



Processor Groups (cont.)

Partitioning the set of processors into groups enables the use 
of data-parallel methods inside the group

– Collective operations and synchronization can also be group-local

– Loosely-synchronous coordination can be used across groups

MD Application on Groups

0

5

10

15

20

0 5 10 15 20

Scaling of Single Parallel Task

Speedup
Ideal

S
pe

ed
up

Number of Processors

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

Scaling of Parallel MD Tasks on Groups

Speedup
Ideal

S
pe

ed
up

Number of Processors



Processor Groups (cont.)

Processor groups enable a hybrid task/data parallel 
programming style

– There is coarse-grained task parallelism between finer-grained data-
parallel processor groups

Multiple advantages:
– Scalability for the loosely-coordinated coarse tasks can be better

– The tightly-coupled data-parallel tasks can be mapped to physical 
nodes in a cluster in a way that enhances locality

By restricting communication to smaller neighborhoods of nodes in the 
physical machine

“Group-local” collective operations don’t have to span large sections of a
petascale machine

Disadvantages:
– Conceptual parallelism model is more complex for the programmer



Rethinking HPC Process Models

The traditional MPI/GA-style heavyweight process model is no 
longer well-matched to hardware characteristics

– Advent of multicore processors changes the node architecture of a 
supercomputer

– Nodes are starting to have multiple sockets with multiple cores each

It should be better to spawn a single heavyweight process per 
separate address space (node)

– Spawn threads on computational cores

– Enables simpler resource sharing between computational tasks

– Data sharing between threads should be under the control of the 
programming model to minimize nasty bugs

Data races

Memory overwrites (single protection domain)



HPC Process Models (cont.)

A threaded model for HPC applications enables more 
dynamic forms of parallelism at the node level

– Dynamic tasks could be activated on demand

Due to local (node) requests

Due to remote (off-node) requests

– Granularity of the tasks and efficient task creation/destruction should 
be critical design & implementation issues

The number of tasks (threads) could be matched to the 
physical capabilities of the machine

– Number of available cores on a node

– More importantly, the needed memory and network bandwidth per task

– Throttle the number of active tasks to maximize the use of bandwidth 
in spite of having inactive cores



Global Arrays & Threads

GA currently utilizes threads for auxiliary operations
– There is a single helper thread per node to handle certain data-parallel 

operations

– The helper thread handles data-parallel operations over local array 
sections

For example, multiplying elements of an array section by a scalar

We would like to extend GA’s use of threads and expose a 
more general interface to them at the programming model 
level

– Challenges in maintaining compatibility with existing operations

– How do we create an API that is simple and productive for the 
scientific programmer?

While maintaining high performance and scalability


	Techniques for Petascale Programming Models
	Distributed Memory Programming Models

