
Fall Creek Falls
Conference 2006

Managing Petascale Complexity

Matt Leininger
Curt Janssen

Rob Armstrong
Kevin Long

Helgi Adalsteinsson

Scalable Computing R&D Group
Sandia National Laboratories

Livermore, CA

23 October 2006

Fall Creek Falls
Conference 2006

Petascale Complexity
● System Level: scalability and performance issues (Computer Science)

– Scalability and reliability of 100K to 1M processors

– Efficient use of multi-core chips

– OS features and scalability

– Petascale I/O interface

– Parallel file system

● Human Level: productivity issues (Computational Scientist)

– Making people scalable

– Dealing with complexity at the human level

– Machine and code usability

How do we enhance scientific productivity in this highly complex environment?

Fall Creek Falls
Conference 2006

An interdisciplinary approach is used to
maximize impact of research platforms

● All HPC elements are coupled to guide development of technologies

Hardware

Computing

Performance Tools,
Benchmarks

Applications

Middleware

HP
C

Sa
nd

ia

FPGAs, InfiniBand

MPI, CCA

MPQC, S3D, Sundance,
PST, CTH, LAMMPS

VProf, mpiP, Vampir, ...

Institutional and R&D
Computing

Need to enhance human aspect of this highly complex environment?

Fall Creek Falls
Conference 2006

Common Component Architecture
(CCA) Addresses Human Scalability

● CCA is a specification of a component environment designed for high
performance scientific computing
– Specification is decided by the CCA Forum

● CCA Forum membership and quaterly meetings open to all
– “CCA-compliant” just means conforming to the specification

● Doesn’t require using any of our code!
– CCA is a combination standards body and user group

● A tool to enhance the productivity of scientific programmers
– Make the hard things easier, make some intractable things tractable
– Support & promote reuse & interoperability between SW components

developed by different expert teams across different institutions
– Not a magic bullet

● i.e. hard problems are still hard

CCA
Common Component Architecture

Mailing List: cca-forum@cca-forum.org

http://www.cca-forum.org

Fall Creek Falls
Conference 2006

The Goal: Mix and Match

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Dashed lines
indicate alternate

connections

Create different applications
in "plug-and-play" fashion

CCA
Common Component Architecture

Fall Creek Falls
Conference 2006

Special Needs of Scientific HPC

● Support for legacy software
– How much change required for component environment?

● Performance is important
– What overheads are imposed by the component environment?

● Both parallel and distributed computing are important
– What approaches does the component model support?
– What constraints are imposed?
– What are the performance costs?

● Support for languages, data types, and platforms
– Fortran
– Complex numbers, Arrays
– Is it available on my parallel computer?

CCA
Common Component Architecture

CCA/Chemistry
Team Members and Collaborators

Steve Benson
Jason Sarich
Lois Curfman McInnes

David Bernholdt
Ricky Kendall

Yuri Alexeev
Manojkumar Krishnan
Elizabeth Jurrus
Carl Fahlstrom
Jarek Nieplocha

Joe Kenny
Curtis Janssen
Ida Nielsen
Rob Armstrong
Ben Allan

Fang Peng
Mark Gordan
Theresa Windus

Edward Valeev

Gary Kumfert

Component architectures are designed to address
the problems of multi-scale multi-physics simulations

● Different program suites have different strengths

● Better way of interchanging program suites and
sharing capabilities between suites

● Need the ability to export and import capabilities

● Language neutral interface specification

– Different code teams focus only on the common
interface

● Provides a runtime environment

– Can dynamically compose an application

C

C++

f77

f90

Python

Java

High level components and
their use in geometry optimization

Solver(TAO)
ui+1 = ui + αs …

Coordinate Model
perform transformations

f,g,Hsg,H

User
Input

Ui+1

f,g,H

Build
options

Ui+1
(Visualization)

f energy

u cartesian coordinates

u internal coordinates

g gradient in cartesians

g gradient in internals

H Hessian in cartesians

H Hessian in internals

s update in internals

NWChem
Model Factory

GUI

MPQC
Model Factory

Model

Ui+1

Builder
Construct application using
framework builder services

Linear
Algebra

PETSc Linear
Algebra Factory

GA Linear
Algebra Factory

Chemistry Components

Mathematics Components

Infrastructure

SIDL Classes

How components impact petascale computing?
● Capability for large scale collaborative development is

critical to advancing Petascale scientific computing

● Share capabilities between multiple disciplines to
enable multi-scale simulations

● Can swap-in code
– Efficient for FPGAs, vector, Cell, multi-core, threading, etc.

● Can implement portable parallelization models

● Can distribute human work more effectively
– Makes the “human” Petascale component scalable

– Components won't make what we already do easier, but let us do
things we wouldn't have considered

– Needed for implementation of more sophisticated methods

Fall Creek Falls
Conference 2006

Sundance

● Discretization through functional differentiation lends itself to a cleanly partitioned software architecture

● Use not limited to finite element codes

● The symbolic core is designed for interoperability with existing frameworks

∑ ∑∑ ∫∑ ∫

∂∂
∂∆+

∂
∂==

∂
∂

ΩΩ j
jiji

i

DD
uDvD

F
uD

vD

F

v

G

matrix stiffness ofElement vectorload ofElement

2

0 φψψ βα
α β βα

α

α
α

α

α

αα

Sundance
Symbolic Services

Evaluates functional
derivatives

Finite Element
Framework

(e.g. SIERRA or the Sundance StdFwk)

e.g.,
• Mesh services

• Basis functions
• Element integrations
• Matrix management

Integral coefficients

Field values, coordinate
functions, etc

●Symbolic system for solving nonlinear PDE's
●Highlevel problem specification and automatic differentiation capabilities that can be used by other codes
●The symbolic system is responsible for representing and evaluating all quantities in the green boxes of:

Fall Creek Falls
Conference 2006

Sundance: The Benefits of High-level
Tools

Fully-implicit 3D Navier-Stokes
assembly time

(Sundance vs MP-Salsa)

0

10

20

30

40

T
im

e
(s

ec
)

MPSalsa Sundance

Semi-implicit pressure-projection 3D
Navier-Stokes assembly times

(Sundance vs Fuego)

0

100

200

300

T
im

e
(s

ec
)

Fuego Sundance

• Principal benefits of high-level tools
– Rapid development of high-performance multiphysics simulators

● Let scientists be scientists, not programmers
– Better ROI on technical staff

● Improve tech transfer time for advanced algorithms
– Code development speed creates runtime speed

– Enables accelerated optimization and UQ algorithms
● Orders of magnitude improvement in overall computation time

– Automated performance tuning
● Measurable improvements relative to legacy codes, w/o human

intervention, immediately applicable to any problem domain

• Some success stories
– Even with little work so far on performance tuning, Sundance already has

runtime efficiency at least as good as Ansys, Sierra, and MP-Salsa
– Very fast turnaround for problems in microfluidics, biophysics,

microsystems, and large-scale inverse problems
– High-level programming can produce simulation code that is more capable

and more efficient than mid-level programming, at lower cost

Fall Creek Falls
Conference 2006

Sundance is being used in an increasing
number of simulation and optimization

application problems

Nominal depth Etched depth Travel time

Etch-compensated minimum-dispersion microfluidic displacer
obtained through shape optimization. Sundance was used to

simulate the device manufacturing and performance
(K.Long, A. Skulan, S. Margolis, and P. Boggs, 2005)

Electric potential in a nanoscale pore in a biological membrane.
Sundance was used as the continuum-level component in a coupled

atomistic-continuum simulator (Debusschere and Adalsteinsson,
2006)

Flow velocity above an electrode gap in a microfluidic
channel. Sundance was used to develop a simulator
coupling electrical, thermal, and fluid effects. Time

between receipt of the paper describing the problem’s
physics to the creation of a working simulation code

was under 24 hours
(K. Long and B. van Bloemen Waanders, 2006)

Fall Creek Falls
Conference 2006

Summary
● Common Component Architecture

– Component based SW models make the “human” Petascale component scalable

– Share code capabilities across scientific disciplines

– Enables swap-in of code optimized for multi-core CPUs/accelerators

● Sundance's high level scientific programming tool

– Provides rapid development and high performance

– Produces simulation code that is more capable and more efficient than mid-level
programming, at lower cost

● Both examples enhance human scalability and enable multi-scale multi-
disciplinary Petascale simulations

