
Fall Creek Falls 
Conference 2006

Managing Petascale Complexity
 

Matt Leininger
Curt Janssen

Rob Armstrong
Kevin Long

Helgi Adalsteinsson

Scalable Computing R&D Group
Sandia National Laboratories

Livermore, CA

23 October 2006



Fall Creek Falls 
Conference 2006

Petascale Complexity
● System Level: scalability and performance issues (Computer Science)

– Scalability and reliability of 100K to 1M processors

– Efficient use of multi-core chips

– OS features and scalability 

– Petascale I/O interface 

– Parallel file system

● Human Level: productivity issues (Computational Scientist)

– Making people scalable

– Dealing with complexity at the human level

– Machine and code usability

How do we enhance scientific productivity in this highly complex environment?
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An interdisciplinary approach  is used to 
maximize impact of research platforms

● All HPC elements are coupled to guide development of technologies
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Institutional and R&D      
Computing 

Need to enhance human aspect of this highly complex environment?
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Common Component Architecture
(CCA) Addresses Human Scalability

● CCA is a specification of a component environment designed for high 
performance scientific computing
– Specification is decided by the CCA Forum

● CCA Forum membership and quaterly meetings open to all
– “CCA-compliant” just means conforming to the specification

● Doesn’t require using any of our code!
– CCA is a combination standards body and user group

● A tool to enhance the productivity of scientific programmers
– Make the hard things easier, make some intractable things tractable
– Support & promote reuse & interoperability between SW components 

developed by different expert teams across different institutions
– Not a magic bullet

● i.e. hard problems are still hard

CCA
Common Component Architecture

Mailing List: cca-forum@cca-forum.org

http://www.cca-forum.org
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The Goal: Mix and Match
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FunctionPort

Dashed lines 
indicate alternate 

connections

Create different applications 
in "plug-and-play" fashion

CCA
Common Component Architecture
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Special Needs of Scientific HPC

● Support for legacy software
– How much change required for component environment?

● Performance is important
– What overheads are imposed by the component environment?

● Both parallel and distributed computing are important
– What approaches does the component model support?
– What constraints are imposed?
– What are the performance costs?

● Support for languages, data types, and platforms
– Fortran
– Complex numbers,  Arrays 
– Is it available on my parallel computer?

CCA
Common Component Architecture
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Component architectures are designed to address 
the problems of multi-scale multi-physics simulations

● Different program suites have different strengths

● Better way of interchanging program suites and 
sharing capabilities between suites

● Need the ability to export and import capabilities

● Language neutral interface specification

– Different code teams focus only on the common 
interface

● Provides a runtime environment

– Can dynamically compose an application

C

C++

f77

f90

Python

Java



  

High level components and
their use in geometry optimization

Solver(TAO)
ui+1 = ui + αs …

Coordinate Model
perform transformations
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Input

Ui+1

f,g,H

Build 
options

Ui+1 
(Visualization)

f   energy

u  cartesian coordinates
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NWChem
Model Factory
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Model Factory
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Builder
Construct application using 
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Linear 
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How components impact petascale computing?
● Capability for large scale collaborative development is 

critical to advancing Petascale scientific computing

● Share capabilities between multiple disciplines to 
enable multi-scale simulations

● Can swap-in code 
– Efficient for FPGAs, vector, Cell, multi-core, threading, etc.

● Can implement portable parallelization models

● Can distribute human work more effectively
– Makes the “human” Petascale component scalable

– Components won't make what we already do easier, but let us do 
things we wouldn't have considered

– Needed for implementation of more sophisticated methods
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Sundance 

● Discretization through functional differentiation lends itself to a cleanly partitioned software architecture

● Use not limited to finite element codes

● The symbolic core is designed for interoperability with existing frameworks
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Sundance 
Symbolic Services

Evaluates functional 
derivatives

Finite Element
Framework

(e.g. SIERRA or the Sundance StdFwk)

e.g., 
• Mesh services

• Basis functions 
• Element integrations
• Matrix management

Integral coefficients

Field values, coordinate 
functions, etc

●Symbolic system for solving nonlinear PDE's 
●Highlevel problem specification and automatic differentiation capabilities that can be used by other codes
●The symbolic system is responsible for representing and evaluating all quantities in the green boxes of:
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Sundance: The Benefits of High-level 
Tools 

Fully-implicit 3D Navier-Stokes
assembly time 

(Sundance vs MP-Salsa)
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Semi-implicit pressure-projection 3D 
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• Principal benefits of high-level tools
– Rapid development of high-performance multiphysics simulators

● Let scientists be scientists, not programmers
– Better ROI on technical staff

● Improve tech transfer time for advanced algorithms
– Code development speed creates runtime speed

– Enables accelerated optimization and UQ algorithms
● Orders of magnitude improvement in overall computation time

– Automated performance tuning
● Measurable improvements relative to legacy codes, w/o human 

intervention, immediately applicable to any problem domain

• Some success stories
– Even with little work so far on performance tuning, Sundance already has 

runtime efficiency at least as good as Ansys, Sierra, and MP-Salsa
– Very fast turnaround for problems in microfluidics, biophysics, 

microsystems, and large-scale inverse problems
– High-level programming can produce simulation code that is more capable 

and more efficient than mid-level programming, at lower cost
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Sundance is being used in an increasing 
number of simulation and optimization 

application problems

Nominal depth Etched depth Travel time

Etch-compensated minimum-dispersion microfluidic displacer 
obtained through shape optimization. Sundance was used to 

simulate the device manufacturing and performance 
(K.Long, A. Skulan, S. Margolis, and P. Boggs, 2005)

Electric potential in a nanoscale pore in a biological membrane. 
Sundance was used as the continuum-level component in a coupled 

atomistic-continuum simulator (Debusschere and Adalsteinsson, 
2006)

Flow velocity above an electrode gap in a microfluidic 
channel. Sundance was used to develop a simulator 
coupling electrical, thermal, and fluid effects. Time 

between receipt of the paper describing the problem’s 
physics to the creation of a working simulation code 

was under 24 hours
(K. Long and B. van Bloemen Waanders, 2006) 
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Summary
● Common Component Architecture 

– Component based SW models make the “human” Petascale component scalable

– Share code capabilities across scientific disciplines 

– Enables swap-in of code optimized for multi-core CPUs/accelerators 

● Sundance's high level scientific programming tool

– Provides rapid development and high performance

– Produces simulation code that is more capable and more efficient than mid-level 
programming, at lower cost

● Both examples enhance human scalability and enable multi-scale multi-
disciplinary Petascale simulations


