
Fall Creek Falls’2007
©Dimitris Nikolopoulos

1

System Software Challenges and Opportunities
on Asymmetric Multi-core Systems

Dimitris Nikolopoulos
Center for High-End Computing Systems

Department of Computer Science
Virginia Tech

dsn@cs.vt.edu
http://www.cs.vt.edu/~dsn

Fall Creek Falls’2007
©Dimitris Nikolopoulos

2

Asymmetric Multi-Core Systems

Why asymmetric?
− Buzz on Cell BE
− Buzz on accelerator-based architectures (FPGA, GPGPU)

More pragmatic reasons
− Matchmaking between computational kernels and specialized

cores (e.g. data-parallel, SIMD)
− Amdahl’s law: few heavy cores with sub-linear speedup vs.

many specialized cores with super-linear speedup
− More flexibility in power management, opportunities beyond

clock gating and voltage/frequency scaling

Fall Creek Falls’2007
©Dimitris Nikolopoulos

3

Challenges for system software

Taming heterogeneity
− Programming languages/libraries, user-level scheduler, OS,

communication mechanisms

Working with multiple ISAs
− Single source (challenge for compilers)

− Multiple sources (challenge for programmers)

Working with heterogeneity in operating systems (or
hypervisors)
− Commodity OS running as host

− Monolithic OS controlling or cores?

− Specialized thin OS running on accelerators?

− Inter-OS interfaces?

− No OS at all? (a thin library instead…)

Fall Creek Falls’2007
©Dimitris Nikolopoulos

4

Challenges for optimization

Seemingly endless choices of programming models
− Any combination of SIMD, data-parallel, task-

parallel,streaming,…

− Any combination of MPI, OpenMP, SIMD,…

− Parallelism in many layers (intra-core, inter-core, intra-
accelerator, inter-accelerator, memory-level, interconnect-
level,…)

− Need new models of parallel computation, maybe new
language constructs (or revised ones), robust libraries,
operating system suppor

Fall Creek Falls’2007
©Dimitris Nikolopoulos

5

Polymorphic Parallelism on the Cell BE

How can we synthesize an efficient parallel execution model?

− Focus on efficiency, then think about programming models

Bottom-up approach to synthesis: modeling

− Synthesize a model of parallel computation

− MMGP (Blagojevic et. Al. HiPEAC’2008)
− Models DMA, SIMD, cross-SPU execution, cross-PPU execution
− Model (simple) user-level schedulers
− Error < 10% (typically < 5%)

− Optimal (non-trivial) layered program decomposition given a
sequential profile and generic annotations of parallelism

− Still limited (does not model load imbalance, detailed memory
access/contention, needs more than one programming models with
more than one abstractions of parallelism)

Fall Creek Falls’2007
©Dimitris Nikolopoulos

6

Polymorphic Parallelism on the Cell BE

• Bottom-up approach to
synthesis: execution
– Event-driven thread

scheduler (PPoPP’07)
– PPU-SPU thread events

visible to user-level and
kernel-level scheduler

– Events trigger:
• Dynamic dependence-

driven scheduling of PPUs
• Dynamic allocation of

SPUs to PPU data-parallel
tasks

• 2.7x over Cell Linux

DMA scheduling
buffer allocation

Task completion

Task offload

concurrency
control/ loop
distribution

dependence-driven
execution,

co-scheduling

Fall Creek Falls’2007
©Dimitris Nikolopoulos

7

Polymorphic Parallelism on the Cell BE

Key technique: adaptation
− Runtime phase analysis

Timing analysis
Characterization using hardware event counters
Memory traffic analysis
Power/thermal characterization (ongoing research)

Why adaptation?
− Search space for program configurations can be large

4 layers of parallelism in the hardware (2-8 parallel execution
units per layer, 1-2 options for communication per layer,)
6-110 phases in typical benchmarks, with widely varying
scalability/synchronization properties
Other dependencies (input, real or artificial load imbalance…)

Fall Creek Falls’2007
©Dimitris Nikolopoulos

8

Future challenges

Vision: one programming model unifying all forms of parallelism

Porting MPI, OpenMP,…

− Hard without synthesis of 2+ models, maybe inefficient…

Explicit parallel programming models

− Need a collection of simple, processor-independent constructs,
expressing patterns of parallel computation

− Use smart compiler/runtime system to map parallel computation

Topology awareness

− Mechanisms for localizing data and computation,

Hypervisors and virtualization

− Really thin OS for higher performance

− Acceleration of system-level tasks (e.g. encryption, compression)

